远海环境通信条件受限,造成无人水面艇 (USV) 集群协同作业时面临局部失联所带来的执行任务失败风险。针对USV集群动态协同探测打击场景下的任务分配网络通信问题,本文研究在任务完成规则明确的各种合作约束下,将异构复合任务分配给具有不同能力无人艇的分布式任务分配方法,提出一种基于局部子网络的复合任务分配算法(BLSA),对本地复合任务进行分解,并通过网络消息传递步数,限制网络通信,形成局部子网络,在子网络中对本地复合子任务进行分配。仿真实验表明,基于局部子网络的复合任务分配算法在保持共识捆绑算法的稳健收敛特性前提下,拓展了任务类型,并且限制网络通信的情况下,仍然可以产生与完全通信近似等同的解决方案,同时还能提高收敛的速度,减少整个网络的通信需求。
Collaborative operation of unmanned surface vehicle (USV) cluster faces the risk of mission failure caused by partial loss of communication in far-sea environment with limited communication conditions. Aiming to solve the problem of task assignment in dynamic cooperative detection and strike scenarios of USV clusters, this paper proposes a new distributed task assignment method for assigning heterogeneous composite tasks to USVs with different capabilities under various cooperative constraints with clear task completion rules. The composite task assignment method is proposed termed as BLSA based on local subnetworks. It decomposes the local composite task and limits the network communication by the number of network message-passing steps to form local subnetworks, in which the local composite subtasks are assigned. The new algorithm has been verified that the BLSA method can expand task types on the premise of maintaining the robust convergence characteristics of consensus-based bundle algorithm. Under limited network communication, the task assignment solutions are approximately equivalent to full communication condition. It can also increase the speed of convergence and reduces the communication requirements of the entire network.
2022,44(24): 81-86 收稿日期:2022-08-05
DOI:10.3404/j.issn.1672-7649.2022.24.017
分类号:U664.82
基金项目:上海市教育发展基金会、上海市教育委员会支持的“曙光计划”(20SG40);上海市优秀学术带头人计划(20XD1421700)
作者简介:程顺才(1997-),男,研究研究生,主要从事无人艇集群任务分配方向研究
参考文献:
[1] 谢少荣, 刘坚坚, 张丹. 复杂海况无人艇集群控制技术研究现状与发展[J]. 水下无人系统学报, 2020, 28(6):584-596
[2] KORSAH G A, STENTZ A, DIAS M B. A comprehensive taxonomy for multi-robot task allocation[J]. The International Journal of Robotics Research, 2013, 32(12):1495-1512
[3] DIONNE D, RABBATH C A. Multi-UAV decentralized task allocation with intermittent communications:the DTC algorithm[C]. American Control Conference, Piscataway, IEEE, 2007:5406-5411.
[4] GODWIN M F, SPRY S, HEDRICK J K. Distributed collaboration with limited communication using mission state estimates[C]. American Control Conference. Minneapolis, USA:IEEE, 2006:2040-2046.
[5] 符小卫, 李建, 高晓光. 带通信约束的多无人机协同搜索中的目标分配[J]. 航空学报, 2014, 35(5):1347-1356
[6] GARCIA, E, CASBEER, D. W. Cooperative task allocation for unmanned vehicles with communication delays and conflict resolution[J] Journal of Aerospace Information Systems, 2016, 13(2):1-13.
[7] CHOI Han-Lim, BRUNET L., HOW J. P.. Consensus-Based De-centralized Auctions for Robust Task Allocation. Robotics, IEEE Transactions, 2009, 25(4):912-926.
[8] DIAS M. B., ZLOT R., KALRA N., et al. Market-based multi-robot coordination:A survey and analysis[J]. Proc IEEE, 2006, 94(7):1257-1270.
[9] SARIEL S., BALCH T., Efficient bids on task allocation for multi-robot exploration in Proc[C]//19th Internationl Florida Artif Intell Res Soc Conf (FLAIRS), Melbourne Beach, FL, USA, 2006, 116-121.
[10] MERCKER T, CASBEER D W, MILLET P T, et al. An extension of consensus-based auction algorithms for decentralized, time-constrained task assignment[C]//Proceedings of the 2010 American Control Conference. IEEE, 2010:6324-6329.