旋转机械如齿轮、轴承等,是船舶动力系统的关键部件,其安全性、可靠性直接决定了船舶的使用寿命。通常,旋转机械的故障与其振动特性密切相关,通过监测旋转机械的振动频率信号,可以分析和匹配相应的故障类型。本文首先介绍船舶动力系统齿轮、轴承的工作原理和特征频率,结合时间系统AR模型构建了船舶旋转机械故障诊断和状态预测系统,通过分析旋转机械部件的时间序列信号,分析和预测旋转机械部件的故障和工作状态。
Ship rotating machinery, such as gears and bearings, is the key component of ship power system. Its safety and reliability directly determine the service life of the ship. Generally, the faults of ship rotating machinery are closely related to its vibration characteristics. By monitoring the vibration frequency signal of rotating machinery, the corresponding fault types can be analyzed and matched. This paper first introduces the working principle and characteristic frequency of the gear and bearing of the ship power system. Combined with the AR model of the time system, a fault diagnosis and state prediction system for ship rotating machinery is built. By analyzing the time series signals of rotating machinery components, the fault and working state of rotating machinery components are analyzed and predicted.
2022,44(24): 177-180 收稿日期:2022-08-14
DOI:10.3404/j.issn.1672-7649.2022.24.038
分类号:U600.58
基金项目:河南省高等学校重点科研项目(23B460027)
作者简介:任燕(1986-),女,硕士,讲师,研究方向为机械工程
参考文献:
[1] 赵丹枫. 基于AR_TSM的时间序列motif关联规则挖掘方法研究[J]. 计算机应用研究, 2021, 38(2):403-408
ZHAO Dan-feng. Research on mining method of time series motif association rules based on AR_TSM[J]. Computer Application Research, 2021, 38(2):403-408
[2] 袁兴明. 基于线性分析及AR模型在GNSS时间序列中的应用[J]. 测绘与空间地理信息, 2020, 43(2):63-66+72
YUAN Xing-ming. Application of linear analysis and AR model in GNSS time series[J]. Mapping and Spatial Geographic Information, 2020, 43(2):63-66+72
[3] 许小芬. 基于AR(p)型高阶模糊时间序列的磨削颤振预测方法[J]. 成组技术与生产现代化, 2018, 35(3):50-54
XU Xiao-fen. A grinding chatter prediction method based on AR (p) high-order fuzzy time series[J]. Group Technology and Production Modernization, 2018, 35(3):50-54