非对称液压缸工作时具有占用空间小、出力大、可靠性高等优点,约80%的液压系统均使用非对称液压缸。由于非对称液压缸两侧的有效作用面积不等,两腔进出口流量不相等,导致负载方向发生变化时,作动器会出现速度和压力振荡,严重影响电液作动器的可靠性与稳定性等技术指标。首先,在对非对称式电液作动器产生速度和压力振荡的原因进行理论分析的基础上,开展对基于非对称液压缸的闭式电液作动器液压系统架构研究,提出新的系统架构,对作动器的四象限工作特性以及稳定性进行分析。最后,在AMEsim平台上搭建作动器模型,分析作动器在负载换向时的动态特性及稳定性。结果表明,本文提出的作动器模型具有良好的稳定性,对推进非对称式电液作动器的广泛应用具有重要意义。
Asymmetric hydraulic cylinders have the advantages of small footprint, large output, and high reliability when working. About 80% of hydraulic systems use asymmetric hydraulic cylinders. Due to the unequal effective area on both sides of the asymmetric hydraulic cylinder, the flow rates of the inlet and outlet of the two chambers are not equal. When the load direction changes, the actuator will experience speed and pressure oscillations, which will seriously affect the reliability and reliability of the electro-hydraulic actuator. Technical indicators such as stability. First of all, based on the theoretical analysis of the reasons for the speed and pressure oscillations of the asymmetric electro-hydraulic actuator, the research on the hydraulic system architecture of the closed electro-hydraulic actuator based on the asymmetric hydraulic cylinder is carried out, and a new System architecture; secondly, analyze the four-quadrant working characteristics and stability of the actuator; finally, build an actuator model on the AMEsim platform to analyze the dynamic characteristics and stability of the actuator during load commutation. The results show that the proposed actuator has good stability, which is of great significance for propelling the wide application of asymmetric electro-hydraulic actuators.
2023,45(4): 103-108 收稿日期:2021-12-07
DOI:10.3404/j.issn.1672-7649.2023.04.020
分类号:U664
基金项目:湖北省自然科学基金资助项目(2020CFB156)
作者简介:郑敬坤(1997-),男,硕士研究生,研究方向为舰船动力装置振动噪声控制
参考文献:
[1] 权龙. 泵控缸电液技术研究现状、存在问题及创新解决方案[J]. 机械工程学报, 2008, 44(11): 87–92
[2] QUAN Z, LONG Q, ZHANG J. Review of energy efficient direct pump controlled cylinder electro-hydraulic technology[J]. Renewable and Sustainable Energy Reviews, 2014, 35: 336–346.
[3] 王波, 李运华, 赵斌, 等. 泵控非对称液压缸系统能效特性对比研究[J]. 液压与气动, 2018(10): 8–14
[4] 张晓刚, 权龙, 杨阳, 等. 并联型三配流窗口轴向柱塞泵特性理论分析及试验研究[J]. 机械工程学报, 2011, 47(14): 151–157
[5] 蒋志昌. 液压参数对称的单活塞杆伺服液压缸[J]. 液压与气动, 2008(8): 75–76
[6] 于安才, 李阳, 王超光, 等. 直驱式单出杆对称液压促动器电液伺服系统研究[J]. 液压与气动, 2017(2): 27–32
[7] 程冬宏, 高有山, 弓旭峰, 等. 基于流量匹配的泵控挖掘机动臂能耗特性分析[J]. 机床与液压, 2019, 47(21): 155–159
[8] ÇALSKAN H, BALKAN T, PLATIN B E. A complete analysis for pump controlled single rod actuators[C]// In Proceedings of the 10th International Fluid Power Conference, Dresden, Germany, 2016: 119–132.
[9] KILIC E, DOLEN M, CALISKAN H, et al. Pressure prediction on a variable-speed pump controlled hydraulic system using structured recurrent neural networks[J]. Control Engineering Practice, 2014, 26, 51–71.
[10] 王留根. FAST新型液压促动器的研制及性能分析[D]. 秦皇岛: 燕山大学, 2020.
[11] 王成宾. 伺服变量泵和泵控差动缸系统理论分析及静动态特性研究[D]. 太原: 太原理工大学, 2014.
[12] 海德福斯. Valves - Directional Controls - Piloted Directional Valve/PD10-45/Piloted Directional Valve. [EB/OL]. https://www.hydraforce.com/zh/products/valves/directional–controls/pd10-45/.
[13] SUN. 直动式, 低压侧, 3位, 梭阀. [EB/OL]https://www.sunhydraulics.com/zh/model/DSCL.