为了提高对舰船三维路径规划和协同调度能力,提出基于改进粒子群优化算法的舰船三维路径规划方法。采用视点模型跟踪方法实现对舰船三维路径移动任务规划设计,获得舰船的方位信息编队任务分布特征量。通过改进粒子群仿生算分获取虚拟刚体状态约束特征值,结合方位信息编队移动分布情况,实现对目标舰船编队的形成、保持与跟踪识别。通过对舰船目标三维参数估计结果,实现对舰船的路径规划。仿真结果表明,采用该方法进行舰船三维路径规划的空间规划能力和参数能力较好,能准确估计舰船位置和空间方位信息。
In order to improve the ability of ship 3D path planning and collaborative scheduling, a ship 3D path planning method based on improved particle swarm optimization algorithm is proposed. The viewpoint model tracking method is used to achieve the planning and design of ship 3D path movement tasks, obtain the distribution characteristics of ship azimuth information formation tasks, and obtain the virtual rigid body state constraint eigenvalues through improved particle swarm biomimetic scoring. Combined with the distribution of azimuth information formation movement, the formation, maintenance, and tracking recognition of the target ship formation are achieved, realize path planning for ships by estimating the three-dimensional parameters of ship targets. The simulation results show that using this method for ship 3D path planning has good spatial planning and parameter capabilities, and can accurately estimate ship position and spatial orientation information.
2023,45(9): 65-68 收稿日期:2023-01-06
DOI:10.3404/j.issn.1672-7649.2023.09.014
分类号:TN919
基金项目:江西省教育厅科学技术研究资助项目(GJJ218605)
作者简介:郑勇明(1976-),男,硕士,副教授,研究方向为数据处理与分析