航空母舰气流场变化的研究对航空母舰的总体设计以及舰岛构型布局具有重要意义。本文基于RANS法对不同风舷角下的航母气流场进行数值模拟,同时也采用了Isherwood经验公式对其风载荷进行计算,并将数值模拟结果与经验公式对比,考察RANS法及Isherwood法对航母风载荷预报的适用性。结果表明,RANS法能够获得相对合理的数值预报结果,而Isherwood法在部分风舷角下的适应性较差。本文还分析了不同风舷角下的航母气流场特性。研究表明,航母外飘舷台和舰岛等结构的绕流场在一定风舷角下会发生强烈的相互影响。本文的结论对航母气流场的研究及总体设计有一定的参考价值。
The study of aircraft carrier airflow field is of great significance to the overall design of aircraft carrier. In this paper, the airflow field of the aircraft carrier under different wind angles is numerically simulated based on RANS method. The Isherwood empirical formula is also used to calculate the wind load. The numerical simulation results are compared with the empirical formula to investigate the applicability of RANS method and Isherwood method to the prediction of aircraft carrier wind load. The results show that the RANS method can obtain reasonable numerical prediction results, while the Isherwood method has poor adaptability under some wind side angles. This paper also analyzes the characteristics of aircraft carrier airflow field under different wind side angles. The researches show that the flow field around aircraft carrier floating platform and ship island will have a strong interaction at a certain wind side angle. The conclusion has a certain reference value for the study of aircraft carrier airflow field.
2023,45(11): 33-39 收稿日期:2022-06-08
DOI:10.3404/j.issn.1672-7619.2023.11.007
分类号:U661.1
基金项目:广东海洋大学科研启动经费资助项目(060302072101)、2020年国家一流专业-船舶与海洋工程(010305072101)、船舶与海洋工程专业认证(574119007)
作者简介:张大朋(1987-),男,博士,讲师,研究方向为船舶与海洋结构物动态响应
参考文献:
[1] 全泽宇. 航母舰载机牵引车路径规划与轨迹跟踪研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
[2] 陈小飞, 时立攀, 毕玉泉. 美军航母舰载机出动回收能力和飞行甲板控制策略探讨[J]. 舰船科学技术, 2020, 42(21): 174–179
CHEN Xiao-fei, SHI Li-pan, BI Yu-quan. A discussion on the sortie generation capacity of embarked airwingsand the doctrine of flight deck control of U. S. aircraft carrier[J]. Ship Science and Technology, 2020, 42(21): 174–179
[3] POLSKY S A, BRUNER C W. Time-accurate computational simulations of an LHA ship airwake[R]. AIAA 2000–4126.
[4] POLSKY S A. A computational study of unsteady ship airwake[R]. AIAA, 2002: 10–22.
[5] CZERWIEC R M, POLSKY S A. LHA airwake wind tunnel and CFD comparison with and without bow flap[R]. AIAA 2004: 48–32.
[6] POLSKY S A, NAYLOR S. CVN airwake modeling and integration: initial steps in the creation and implementation of a virtual burble for F-18 carrier landing simulations[R]. AIAA 2005: 62–98.
[7] RAJAGOPALAN G, SCHALLER D, WADCOSK A J, et al. Experimental and computational simulation of a model ship in a wind tunnel[R]. AIAA, 2005: 13–47.
[8] SYMS G F. Simulation of simplified-frigate air wakes using a lattice-boltzmann method[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96: 197–126
[9] FORREST S, OWEN I. An investigation of ship airwakes using detached-eddy simulation[J]. Computers and Fluids, 2010, 29: 656–673
[10] KULKARNI P R, SINGH S N, SESHADRI V. Parametric studies of exhaust smoke-superstructure interaction on a naval ship using CFD[J]. Computers and Fluids, 2007, 36: 794–816
[11] YUAN W, WALL A, LEE R. Combined numerical and experimental simulations of unsteady ship airwakes[J]. Computers & fluids, 2018, 172: 29–53
[12] BUCHHOLZ J, MARTIN J, KREBILL A F, et al. Structure of a ship airwake at model and full scale[C]//2018 AIAA Aerospace Sciences Meeting. 2018: 1263.
[13] DOOLEY G, MARTIN J E, BUCHHOLZ J H J, et al. Ship airwakes in waves and motions and effects on helicopter operation[J]. Computers & Fluids, 2020, 208: 104627
[14] 洪伟宏, 姜治芳, 王涛. 上层建筑形式及布局对舰船空气流场的影响[J]. 中国舰船研究, 2009(2): 53–58.
[15] 陆超, 姜治芳, 王涛. 不同工况条件对舰船舰面空气流场的影响[J]. 舰船科学技术, 2009, 31(9): 38–42.
[16] 陆超, 姜治芳, 王涛. 基于舰载机起降限制的舰船气流场特性评估方法初探[J]. 中国舰船研究, 2010, 5(1): 39–42.
[17] 陆超, 姜治芳, 王涛. 两种飞行甲板形式的舰船空气流场特性比较[J]. 舰船科学技术, 2009, 31(7): 29–31.
[18] 郜冶, 刘长猛, 贺征. 风向变化产生的航母甲板涡结构特征研究[J]. 空气动力学学报, 2013, 31(3): 310–315.
[19] 赵维义. 直升机旋翼与舰船复合流场试验方法研究[J]. 飞行力学, 2007(2): 72–74+77.
[20] 郜哲明. 航母甲板风场和火灾流场实验与数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[21] 於菟, 秦江涛, 方乐. 航母气流场数值模拟方法研究[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(06): 1036–1040.
[22] Wind resistance of merchant ship[J]. Trans. of RINA, 1972(112): 327–338.