对于侧推器的研究常采用模型试验和公式推导的方法,这些方法对于侧推器的设计研究成本较高,且无法获得槽道内的精细流场。在CFD计算中,采用MRF方法计算误差较大,为此,对照1308和1308-B槽道侧推器试验,采用全流域结构网格的URANS模型对试验进行了仿真计算,探究了边界条件、计算域、结构网格密度和时间步长对计算结果的影响,并最终确定一套计算方法对试验结果进行了验证,发现数值计算结果与试验的吻合度较高。误差在6%以内。在此基础上对不同叶片数的1308和1308-B槽道侧推器不同螺距比下的水动力和流场特性做了计算分析。
Model test and formula derivation are often used in the research of side thruster. These methods have high cost for the design and research of side thruster, and can not obtain the fine flow field in the channel. In CFD calculation, the calculation error of MRF method is large. Therefore, compared with 1308 and 1308-B channel side thruster tests, The URANS model of the whole basin structural grid is used to simulate the test, and the effects of boundary conditions, calculation domain, structural grid density and time step on the calculation results are explored.Finally, a set of calculation method is determined to verify the test results. It is found that the numerical results are in good agreement with the experimental results.The error is within 6%. On this basis, the hydrodynamic and flow field characteristics of 1308 and 1308-b channel thrusters with different blade numbers under different pitch ratios are analyzed.
2023,45(11): 59-64 收稿日期:2022-05-31
DOI:10.3404/j.issn.1672-7619.2023.11.012
分类号:U661
作者简介:杨星晨(1993-),男,硕士研究生,研究方向为海洋结构物设计与制造
参考文献:
[1] TANIGUCHI K. Investigations into fundamental characteristics and operating performances of side thruster[R]. Mitsubishi Heavy Industries Ltd, Mitsubishi Technical Bulletin, 1966.
[2] 沈国鉴, 沈行龙. 轴向圆筒内对称叶剖面螺旋桨系列的模型试验研究 [J]. 中国造船, 1982(2): 22–30.
[3] RIDLEY D E. Effect of Tunnel Entrance Configuration on Thruster Performance[J]. Marine Technology and SNAME News, 1969, 6(1): 60–65
[4] BEVERIDGE J L. Design and performance of bow thrusters[J]. Marine Technology SNAME News, 1972, 9(4): 439–453
[5] VERSTEEG H K, MALALASEKERA W. An introduction to computational fluid dynamics: the finite volume method[M]. Pearson education, 2007.
[6] 刘志华, 熊鹰, 叶金铭, 等. 基于多块混合网格的RANS方法预报螺旋桨敞水性能的研究 [J]. 水动力学研究与进展A辑, 2007(04): 450-456.
[7] KINNAS S A, CHANG S-H, HE L, et al. Performance prediction of a cavitating RIM driven tunnel thruster[C]. Proceedings of the First International Symposium on Marine Propulsors, SMP, 2009: 435–442.
[8] CAO Q-M, HONG F-W, TANG D-H, et al. Prediction of loading distribution and hydrodynamic measurements for propeller blades in a rim driven thruster[J]. Journal of Hydrodynamics, 2012, 24(1): 50–57
[9] YU C, YANG C. Study of tunnel thruster performance and flow by quasi-steady Reynolds-Averaged Navier-Stokes simulation[J]. Journal of Shanghai Jiaotong University, 2016, 21(6): 662–671
[10] 沈海云. 可调侧推器设计与水动力性能仿真研究[D]. 杭州: 浙江大学, 2012.
[11] 刘震宇, 郁程, 杨晨俊, 侧推器CFD计算初步研究[C]//2013年船舶水动力学学术会议, 2013: 5.
LIU Zhen-yu, YU Cheng, YANG Chenjun, Preliminary study on CFD calculation of side thruster[C]//2013 Academic Conference on Ship Hydrodynamics, 2013.5.
[12] 郁程, 杨晨俊. 基于MRF模型的侧推器水动力性能数值模拟研究[C]//2013年船舶水动力学学术会议, 2013: 7.
[13] Yukun F, Zuogang C, Yi D, et al. An experimental and numerical investigation on hydrodynamic characteristics of the bow thruster[J]. Ocean Engineering, 2020, 209: 107348
[14] 钱晓南. 船用螺旋桨技术研究及系列图谱 [M]. 上海: 上海交通大学出版社, 2017.
[15] BENG YEO K, SABATLY R, YEE HAU W, et al. Effects of marine propeller performance and parameters using CFD method[J]. Journal of Applied Mechanics, 2014, 14(22): 3083–3088