以PN50 DN250三通调节阀为研究对象,针对三通调节阀主旁通回路高压实际工况流量系数缺乏数值模拟研究及试验条件的问题,提出一种修正低压试验工况流量系数得到高压实际工况流量系数的方法。利用CFD计算流体力学方法模拟研究低压工况与高压工况下三通调节阀在10%~100%共10组典型开度下主控制回路和旁通回路流动特性,计算对应流量系数Kv,根据提出的高低压工况流量系数修正转化关系,对低压试验工况下的试验流量系数进行修正,得到高压实际工况流量系数,并通过试验加以验证。结果表明,修正后的高压工况流量系数曲线与试验流量系数曲线趋势一致,且修正后的流量系数与试验平均误差在2.35%以内,证明了该修正方法具有良好的精度,可用于高压实际工况下流量系数的预测。
To solve the problem of lack of numerical simulation research and test conditions for the flow coefficient of the main bypass circuit of the three-way regulating valve under the high pressure actual working conditions, taking the PN50 DN250 three-way regulating valve as the research object, a method to modify the flow coefficient under low-pressure test conditions to obtain the flow coefficient under high-pressure actual working conditions is proposed. CFD computational fluid dynamics method is used to simulate and study the flow characteristics of the main control circuit and bypass circuit of the three-way regulating valve under low-pressure and high-pressure conditions under 10% ~ 100% ten groups of typical opening, calculate the corresponding flow coefficient kV, and correct the test flow coefficient under low-pressure test conditions according to the proposed correction conversion relationship of flow coefficient under high-pressure and low-pressure conditions, so as to obtain the flow coefficient under high-pressure actual conditions, which is confirmed by experiments. The results show that the trend of the corrected flow coefficient curve under high pressure condition is consistent with the test flow coefficient curve, and the average error between the corrected flow coefficient and the test is less than 2.35%, which proves that the correction method has good accuracy and can be used to predict the flow coefficient under high pressure actual condition.
2023,45(11): 65-71 收稿日期:2022-05-31
DOI:10.3404/j.issn.1672-7619.2023.11.013
分类号:TH134
作者简介:周爱民(1979-),男,硕士,高级工程师,主要从事船舶大气环境控制系统研究
参考文献:
[1] 孙彩珍, 李红, 汤攀. 三通调节阀分流比及内部流动特性分析[J]. 排灌机械工程学报, 2019, 37(5): 441–446.
[2] 王冠, 邓建飞, 寇琳媛, 等. 多级降压调节阀阀芯流阻特性及参数分析[J]. 流体机械, 2021, 49(12): 70–77.
[3] 石娟, 姚征, 马明轩. 调节阀内三维流动与启闭过程的数值模拟及分析[J]. 上海理工大学学报, 2005(6): 498–502.
[4] QIAN J, WU J, GAO Z, et al. Effects of throttling window on flow rate through feed-water valves[J]. ISA transactions, 2020, 104: 393–405
[5] 魏丹, 宋花平, 赵军. 新型压力调节阀内部流场的数值模拟[J]. 化工进展, 2015, 34(5): 1264–1268.
[6] TAO J Y, LIN Z, MA C J, et al. An experimental and numerical study of regulating performance and flow loss in a V-port ball valve[J]. Journal of Fluids Engineering, 2020, 142(2): 9–15
[7] GAO Z X, YUE Y, YANG J M, et al. Numerical Study of the Microflow Characteristics in a V-ball Valve[J]. Micromachines, 2021, 12: 155.
[8] 章茂森, 李忠, 靳淑军, 等. 某冷却系统用三通调节阀内部湍流动能和耗散率分析[J]. 流体机械, 2019, 47(3): 37–41.
[9] 李树勋, 李忠, 周爱民, 等. 三通调节球阀节流盘开口型线优化及试验研究[J]. 华中科技大学学报(自然科学版), 2017, 45(2): 61–66.2
[10] 游超, 杨振彪, 刘浩, 等. 大口径流量调节阀模型试验研究[J]. 给水排水, 2020, 56(6): 27–32.
[11] 王佳星, 赵家睿, 李斯特, 等. 不同放汽阀流量特性对弹射过程的影响规律[J]. 化工学报, 2021, 72(S1): 318–325.
[12] GB/T 17213.9-2005,. 工业过程控制阀第2-3部分流通能力试验程序[S]. 2005
[13] 张万年. 大口径活塞式流量调节阀CFD模拟与流噪音预测研究[D]. 兰州理工大学, 2020.