载人潜水器的三维全局路径规划研究对其智能化水平的提高有着重要作用。以“奋斗者”号载人潜水器为研究对象,首先建立三维真实海底地形模型和海流模型;其次,综合考虑路径长度、地形代价和能量消耗代价等目标,建立路径规划的代价函数。最后,使用改进人工蜂群算法对该路径规划问题进行求解,并分别与基本人工蜂群算法、遗传算法和粒子群算法进行比较。仿真结果表明,改进后的人工蜂群算法可以不断跳出局部最优,为载人潜水器高效地规划出满足性能要求的航行路径。
The research on three-dimensional global path planning of human occupied vehicle plays a significiant role in improving its intelligent level. Taking the Fendouzhe as the research object, first of all, the three-dimensional seabed terrain model is estabilshed based on the general bathymetric chart of the oceans, the ocean current model is also established; Secondly, considering the objectives of path length, terrain cost and energy consumption cost, a comprehensive cost function is established. Finally, in order to improve the search capability of the basic artificial bee colony algorithm, through the modification of the nectar source initialization method and nectar source search mechanism, the modified artificial bee colony algorithm is realized and used to solve the path planning problem. The simulation results show that the modified artificial bee colony algorithm can constantly jump out the local optimum and efficiently plan the path that meets the performance requirements compared with the basic artificial bee colony algorithm, genetic algorithm and particle swarm optimization algorithm.
2023,45(11): 76-82 收稿日期:2022-04-19
DOI:10.3404/j.issn.1672-7619.2023.11.015
分类号:TP24
基金项目:国家重点研发计划资助项目(2016YFC0300604);国家重点研发计划资助项目(2021YFC2801502);辽宁省兴辽英才计划资助项目(XLYC1902032)
作者简介:陈帅华(1998-),男,硕士研究生,研究方向为载人潜水器控制技术及水下机器人路径规划
参考文献:
[1] 中国科学院沈阳自动化研究所助力“奋斗者”号完成万米深潜作业[J]. 自动化博览, 2020, 37(12): 5.
Shenyang Institute of Automation, Chinese Academy of Sciences assisted the "Fendouzhe" to complete the 10000 meter deep diving operation [J]. Automation Panorama, 2020, 37(12): 5.
[2] 渠继东, 周念福, 张亦驰, 等. 深海载人原位研究装备发展概述[J]. 舰船科学技术, 2021, 43(15): 148–153.
QU J D, ZHOU N F, ZHANG Y C, et al. Review of deep-sea manned in-situ research equipment [J]. Ship Science and Technology, 2021, 43(15): 148–153.
[3] 冯炜, 张静远, 王众, 等. 海洋环境下基于量子行为粒子群优化的时间最短路径规划方法[J]. 海军工程大学学报, 2017, 29(6): 72–77.
FENG W, ZHANG J Y, WANG Z, et al. A time-optimal path planning method based on quantum-behaved particle swarm optimization in ocean environment [J]. Journal of Naval University of Engineering, 2017, 29(6): 72–77.
[4] 占银. 基于蚁群算法和人工势场法的水下机器人路径规划研究[D]. 长春: 吉林大学, 2020.
[5] GARAU B, BONET M, ALVAREZ A, et al. Path planning for autonomous underwater vehicles in realistic oceanic current fields: to gliders in the Western Mediterranean Sea[J]. Journal of Maritime Research, 2009, 6: 5–22
[6] KUFFNER J J, LAVALLE S M. RRT-connect: An efficient approach to single-query path planning[C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). San Francisco, CA, USA, 2000: 995–1001.
[7] CARRERAS M, HERNÁNDEZ J D, VIDAL E, et al. Online motion planning for underwater inspection[C]//2016 IEEE/OES Autonomous Underwater Vehicles (AUV), Tokyo, Japan, 2016: 336–341.
[8] GARAU B, ALVAREZ A, OLIVER G. AUV navigation through turbulent ocean environments supported by onboard H-ADCP[C]//Proceedings 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 2006: 3556–3561.
[9] DE BOOR C. On Calculating with B-Splines[J]. Journal of Approximation Theory, 1972, 6(1): 50–62
[10] COX M G. The numerical evaluation of B-splines[J]. IMA Journal of Applied Mathematics, 1972, 10(2): 134–149
[11] 赵苗, 高永琪, 吴笛霄, 等. 复杂海战场环境下AUV全局路径规划方法[J]. 国防科技大学学报, 2021, 43(1): 41–48.
ZHAO M, GAO Y Q, WU D X, et al. AUV global path planning method in complex sea battle field environment [J]. Journal of National University of Defense Technology, 2021, 43(1): 41–48.
[12] ALVAREZ A, CAITI A, ONKEN R. Evolutionary path planning for autonomous underwater vehicles in a variable ocean[J]. IEEE Journal of Oceanic Engineering, 2004, 29(2): 418–429
[13] KARABOGA D. An idea based on honey bee swarm for numerical optimization[R]. 2005.