针对参考航速时变的无人船(unmanned surface vehicle,USV)曲线轨迹跟踪控制问题,提出基于模型预测控制(model predictive control,MPC)的USV轨迹跟踪控制方法。建立USV三自由度运动模型,在已知期望轨迹的前提下,构建Serret-Frenet坐标系,利用投影法找到期望点,引入时变的期望参考速度函数,在控制时域内构造出了时变的参考量序列。针对轨迹跟踪控制需求,结合USV位置、投影点位置、期望点位置、合速度方向及期望方向设计了轨迹跟踪控制目标函数,考虑USV动力机构约束,设计USV时变参考量的轨迹跟踪模型预测控制器。仿真结果表明,设计的轨迹跟踪控制器对参考位置和参考航速均具有良好的控制效果。
Aiming at the time-varying control of ship speed in current USV trajectory tracking, a USV trajectory tracking control method based on model predictive control algorithm is proposed. The USV three-degree-of-freedom motion model is established, the Serret-Frenet coordinate system is constructed on the premise of known desired trajectory, the desired point is found by projection method, the time-varying expected reference speed function is introduced and the time-varying reference sequence is constructed in the control time domain. Aiming at the requirements of trajectory tracking control, the trajectory tracking control objective function is designed combining USV position, projection point position, desired point position, closing speed direction and desired direction. Considering the constraints of USV power mechanism, a trajectory tracking model predictive controller with time-varying USV reference is designed. The simulation results show that the designed trajectory tracking controller has good control effect on reference position and reference speed.
2023,45(11): 83-87 收稿日期:2021-12-14
DOI:10.3404/j.issn.1672-7619.2023.11.016
分类号:U675.91
基金项目:国家自然科学基金资助项目(52001240);湖北省自然科学基金资助项目(2020CFB307);重庆市自然科学基金项目(cstc2021jcyj-msxmX1220)
作者简介:雷超凡(1997-),男,硕士研究生,研究方向为船舶运动控制
参考文献:
[1] 柳晨光, 初秀民, 王乐, 等. 欠驱动水面船舶的轨迹跟踪模型预测控制器[J]. 上海交通大学学报, 2015, 49(12): 1842–1848+1854
LIU CG, CHU XM, WANG L, et al. Trajectory tracking model predictive controller for underactuated surface ship[J]. Journal of Shanghai JiaoTong University, 2015, 49(12): 1842–1848+1854
[2] 齐雪, 张利军, 赵杰梅. Serret-Frenet坐标系下AUV自适应路径跟踪控制[J]. 系统科学与数学, 2016, 36(11): 1851–1864
QI X, ZHANG LJ, ZHAO JM. AUV adaptive path tracking control in Serret-Frenet coordinate system[J]. Systems Science and Mathematics, 2016, 36(11): 1851–1864
[3] 王宏健, 陈子印, 贾鹤鸣, 等. 基于反馈增益反步法欠驱动无人水下航行器三维路径跟踪控制[J]. 控制理论与应用, 2014, 31(1): 66–77
WANG HJ, CHEN ZY, JIA HM, et al. Underactuated unmanned underwater vehicle 3-D path tracking control based on feedback gain backstepping[J]. Control Theory and Application, 2014, 31(1): 66–77
[4] 王威, 陈慧岩, 马建昊, 等. 基于Frenet坐标系和控制延时补偿的智能车辆路径跟踪[J]. 兵工学报, 2019, 40(11): 2336–2351
WANG W, CHEN HY, MA JH, et al. Intelligent vehicle path tracking based on frenet coordinate system and control delay compensation[J]. Journal of Military Engineering, 2019, 40(11): 2336–2351
[5] 张成举, 王聪, 曹伟, 等. 欠驱动USV神经网络自适应轨迹跟踪控制[J]. 哈尔滨工业大学学报, 2020, 52(12): 1–7
ZHANG CJ, WANG C, CAO W, et al. Underactuated USV Neural network adaptive tracking control[J]. Journal of Harbin University of Technology, 2020, 52(12): 1–7
[6] 葛科奇. 动态神经模糊模型的船舶欠驱动水面运动控制[J]. 舰船科学技术, 2019, 41(2): 25–27
GE KQ. Dynamic neuro-fuzzy model for vessel underactuated surface motion control[J]. Ship Science and Technology, 2019, 41(2): 25–27
[7] ROGER S, ØYVIND S, THOR I. FOSSEN. Modeling, identification, and adaptive maneuvering of CyberShip II: A complete design with experiments [J]. IFAC Proceedings Volumes, 2004, 37(10).