自主式水下航行器(AUV)作为一种新型水下无人作战平台,是当今世界主要海军国家重点发展的水下作战装备,保证并提高AUV水下生存力是持续推进并加强水下战斗力建设的重要一环。本文主要针对AUV水下生存力问题,对内部因素和外部因素等相关的影响因素进行分类和分析,提出提高AUV水下生存力的关键技术。对于解决AUV的生存障碍、提高其水下实战化能力具有重要参考意义。
As a new type of underwater unmanned combat platform, Autonomous Undewater Vehicle(AUV) is the underwater combat equipment developed by the major naval countries in the world. Ensuring and improving underwater survivability of AUV is an important part of continuously promoting and strengthening the construction of underwater combat capability. Aiming at the problem of AUV underwater survivability, this paper classifies and analyzes the relevant influencing factors such as internal and external factors, and puts forward the key technologies to improve AUV underwater survivability, which has important reference significance for solving the survival obstacles of AUV and improving its underwater practical combat ability.
2023,45(11): 98-101 收稿日期:2022-05-09
DOI:10.3404/j.issn.1672-7619.2023.11.019
分类号:TP242, {P756}
作者简介:侯海平(1981-),男,高级工程师,研究方向为水下无人平台和载荷
参考文献:
[1] ZHANG Guo-cheng, HUANG Hai, QIN Hong-de, et al. A novel adaptive second order sliding mode path following control for a portable AUV[J]. Ocean Engineering, 2018, 151: 82–92
[2] 陈柱, 徐国华, 王冠学, 等. AUV主动应急自救机制与策略[J]. 中国舰船研究, 2018, 13(6): 120–127
CHEN Zhu, XU Guo-hua, WANG Guan-xue, et al. AUV emergency self-rescue mechanism and strategy[J]. Chinese Journal of Ship Research, 2018, 13(6): 120–127
[3] 陈柱. 水下高速无人艇应急系统研制[D]. 武汉: 华中科技大学, 2018.
[4] 侯海平, 付春龙, 赵楠, 等. 智能自主式水下航行器技术发展研究[J]. 舰船科学技术, 2022, 44(1): 86–90
HOU Hai-ping, FU Chun-long, ZHAO Nan, et al. Research on technology development of the intelligent AUV[J]. Ship Science and Technology, 2022, 44(1): 86–90
[5] A advancing autonomous systems. An analysis of current and future technology for unmanned maritime vehicles[R/OL]. https://www.rand.org/content/dam/rand/pubs/research_reports/RR2700/RR2751/RAND_ RR2751.pdf
[6] WERNLI RL, 彭涛, 译. 廉价UUV的军事应用是否已具备技术条件[J], 潜艇技术, 2019, 18(1): 25–31.
[7] 何青海, 丁文强, 吴文龙. 海洋环境对UUV作战使用影响研究[J]. 舰船科学技术, 2016, 38(7): 99–102
[8] 李磊, 杜度, 陈科, 等. 基于改进生物启发模型的UUV在线避障方法[J]. 水下无人系统学报, 2019, 27(3): 266–271
LI Lei, DU Du, CHEN Ke, et al. Online obstacle avoidance of UUV based on the improved biological inspired model[J]. Journal of Unmanned Undersea Systems, 2019, 27(3): 266–271
[9] 牛卉, 武溪, 卢俊. 水中智能武器发展趋势浅析[J]. 飞航导弹, 2019(7): 1–4+36
[10] 陈科, 叶开富, 杜度, 等. 长航时UUV导航校正与性能评估方法[J]. 水下无人系统学报, 2019, 27(3): 355–360
[11] 王奎民. 主要海洋环境因素对水下航行器航行影响分析[J]. 智能系统学报, 2015, 10(2): 316–323
[12] 郭银景, 鲍建康, 刘琦, 等. AUV实时避障算法研究进展[J]. 水下无人系统学报, 2020, 28(4): 351–358
[13] 任丽彬, 桑林, 赵青, 等. AUV动力电池应用现状及发展趋势[J]. 电源技术, 2017, 41(6): 952–955
[14] 张晓悠. AUV故障诊断与容错控制技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
[15] 张宝贵, 周俊. UUV应急处理策略构建推理研究[J]. 数字海洋与水下攻防, 2021, 4(2): 139–142