为了研究寒地海域航行实体靶船与浮冰发生碰撞过程中的载荷响应,基于S-ALE流固耦合方法和罚函数接触理论构建船-冰-水耦合的数值模型,展开冰-水耦合、船-水耦合以及船-冰-水耦合机理的研究,详细分析碰撞过程中产生的水阻力与冰载荷。结果表明,S-ALE方法在处理船-冰-水相互作用时可以较好地模拟碰撞场景。船体受载主要由水阻力与冰载荷构成,冰载荷占据主要成分。水阻力受到航速的影响,且水域对冰载荷起到了削弱作用;冰载荷随浮冰厚度、尺寸的增加而增加,浮冰尺寸的影响程度高于冰厚。
In order to study the load response of full-scale target ship sailing in cold water during collision with floating ice, a numerical model coupling of ship-ice-water was constructed by the S-ALE fluid-solid coupling method and the penalty function contact theory. The mechanism of ice-water coupling, ship-water coupling and ship-ice-water coupling was studied, and the water resistance and ice load generated in collision processes were analyzed. The results show that the S-ALE method could simulate accurately of collision scene in dealing with the ship-ice-water interaction problem. The resistance of the target ship mainly includes water resistance and ice resistance, in which ice resistance occupies the main component. The water resistance is affected by the speed of target ship, and water domain would decrease the ice load. The ice load increases with the increasing of ice thickness and size, and the ice size has more effect.
2023,45(12): 1-7 收稿日期:2022-11-12
DOI:10.3404/j.issn.1672-7619.2023.12.001
分类号:U664.21
基金项目:黑龙江省自然科学基金资助项目(LH2020E078);国家自然科学基金资助项目(52171305,52101305)
作者简介:丛滨(1982-),男,硕士,工程师,研究方向为水面靶标与目标特性
参考文献:
[1] STROEVE J, NOTZ D. Changing state of Arctic sea ice across all seasons[J]. Environmental Research Letters, 2018, 13(10): 103001
[2] BRIDGES R. Risks and damages caused in ice navigation[J]. Encyclopedia of maritime and offshore engineering, 2017: 1–12
[3] 刘俊杰, 夏劲松, 金言, 等. 冰-水耦合作用下船舶与浮冰碰撞动响应数值仿真研究[J]. 船舶力学, 2020, 24(5): 651–661
[4] XUE Y, LIU R, Li Z, et al. A review for numerical simulation methods of ship–ice interaction[J]. Ocean Engineering, 2020, 215(1)
[5] 蒋昱妍. 基于粘聚单元法的海洋结构物-层冰碰撞数值模拟[D]. 大连: 大连理工大学, 2020.
[6] GAGNON R E, WANG J. Numerical simulations of a tanker collision with a bergy bit incorporating hydrodynamics, a validated ice model and damage to the vessel[J]. Cold Regions Science and Technology, 2012, 81: 26–35
[7] JOU O, CELIGUETA M A, LATORRE S, et al. A bonded discrete element method for modeling ship–ice interactions in broken and unbroken sea ice fields[J]. Computational Particle Mechanics, 2019, 6: 739–765
[8] KHAYYER A, GOTOH H, FALAHATY H, et al. An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions[J]. Computer Physics Communications, 2018, 232: 139–164
[9] 薛彦卓, 陆锡奎, 王庆, 等. 冰三点弯曲试验的近场动力学数值模拟[J]. 哈尔滨工程大学学报, 2018, 39(4): 607–613
[10] 王明振, 曹东风, 吴彬, 等. 基于 S-ALE 流固耦合方法的飞机水上迫降动力学数值分析[J]. 重庆大学学报, 2020, 43(6): 21–29
[11] 汪春辉, 王嘉安, 王超, 等. 基于 S-ALE 方法的圆柱体垂直出水破冰研究[J]. 力学学报, 2021, 53(11): 3110–3123
[12] 孙雨薇. 低温下船体结构反复碰撞损伤研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[13] 汪春辉, 王嘉安, 王超, 等. 浮冰群在波浪作用下纵向运动规律的试验研究[J]. 华中科技大学学报(自然科学版), 2022, 50(4): 143–148
[14] 赵伟栋. 破冰船结构低温疲劳性能与冰致疲劳分析方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[15] COON M D, KNOKE G S, ECHERT D C, et al. The architecture of an anisotropic elastic‐plastic sea ice mechanics constitutive law[J]. Journal of Geophysical Research:Oceans, 1998, 103(C10): 21915–21925
[16] 赵欣, 李凤霞, 战守义. 基于粒子系统的舰船航迹仿真[J]. 计算机工程, 2008, 34(15): 22–24