针对振动主动控制次级通道的时变特点和在线辨识次级通道算法中各通道相互影响,导致控制效果不佳的问题,提出一种基于块处理的变步长自适应振动主动控制方法。根据参考信号和期望信号的功率变化对次级通道辨识和振动控制进行块处理的在线调整步长,排除异常信号干扰,进一步提高辨识精度与速度。仿真结果表明,与原算法比较,该算法的辨识速度和精度均能提升近10%,系统在控制环境突变下能提前近一半时间完成收敛。以单层隔振平台为控制对象对本算法进行实验研究,结果表明,该算法对单层隔振平台的振动响应有较好的控制效果,验证了该算法在实际控制中的有效性。
In order to solve the problem of poor control effect caused by the interaction between secondary channel and control channel in active vibration control, an active vibration control method with variable step secondary channel online identification based on block processing is proposed.The variable step size for block processing of secondary channel identification and vibration control is improved according to the power changes of reference signal and expected signal. The step size is adjusted on-line to accelerate the convergence speed of algorithm, improve the identification accuracy and enhance the system stability.The simulation results show that, compared with the original algorithm, the algorithm has faster identification speed, higher accuracy and better system stability.The algorithm is experimentally studied with single-layer vibration isolation platform as control object.The results show that the algorithm has better control effect on vibration response of single-layer vibration isolation platform, and the effectiveness of the algorithm in actual control is verified.
2023,45(12): 40-46 收稿日期:2022-08-11
DOI:10.3404/j.issn.1672-7619.2023.12.008
分类号:U661.44;O328
作者简介:徐世宇(1993-),男,硕士研究生,研究方向为舰船机械振动与噪声控制
参考文献:
[1] 尚国清, 郭有松. 舰船振动隔离技术理论与应用研究进展[J]. 舰船科学技术, 2006, 28(1): 15–18
SHANG Guoqing, GUO Yousong. Theoretical research and application progress of warship vibration control technique[J]. Ship Science and Technology, 2006, 28(1): 15–18
[2] MATHIAS W, COLIN H, INGVAR C, et al. Active control of engine vibrations in a collins class submarine[J]. Research Report, 2003(11): 1103–1581P
[3] FéLIX, FERNANDO B, et al. Improved active noise control algorithm based on the convex combination method[J]. Journal of The Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(2): 1–12
[4] BELYI, VALIANTSIN, WOON-SENG G. A combined bilateral and binaural active noise control algorithm for closed-back headphones[J]. Applied Acoustics, 2020, 160: 107129
[5] 杨茜, 吴超, 付强, 颜永红. ANC次级通道在线建模的辅助噪声控制方法[J]. 网络新媒体技术, 2014, 3(5): 43–46
[6] ERIKSSON L J, ALLIE M C. Use of random noise for on‐line transducer modeling in an adaptive active attenuation system[J]. Journal of the Acoustical Society of America, 1986, 85(2): 797–802
[7] BAO C, SAS P, H. VAN B. Adaptive Active Control of Noise in 3-D Reverberant Enclosures[J]. Journal of Sound & Vibration, 1993, 161: 501–514
[8] ZHANG M, LAN H, SER W. A robust online secondary path modeling method with auxiliary noise power scheduling strategy and norm constraint manipulation[J]. IEEE transactions on Speech and Audio Processing, 2003, 111(1): 45–53
[9] 杨铁军, 顾仲权, 鲁明月, 等. 基于误差通道在线辨识的结构振动主动控制系统[J]. 振动与冲击, 2004, 23(3): 55–59+69
YANG Tiejun, GU Zhongquan, LU Mingyue, et al. Active control system for structural vibration with online secondary path identification[J]. Journal of Vibration and Shock, 2004, 23(3): 55–59+69
[10] YANG Tiejun, ZHU Liping , LI Xinhui, et al. An online secondary path modeling method with regularized step size and seif-tuning power scheduling[J]. The Journal of the Acoustocal Society of America, 2018, 134: 1076–1084
[11] AKHTAR M T, MITSUHASHI W. Improving performance of hybrid active noise control systems for uncorrelated narrowband disturbances[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(7): 2058–2066
[12] AHMED S, et al. Robust auxiliary-noise-power scheduling in active noise control systems with online secondary path modeling[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2013, 21(4): 749–761