AUV导航、规划和控制技术是实现其自主航行和作业的核心内容和关键环节。本文从硬件组成、算法对比角度归纳分析AUV导航技术的发展,从传统算法、智能算法角度归纳分析AUV避障规划技术的发展,从控制算法、控制分配策略角度归纳分析AUV控制技术的发展。最后,对AUV自主航行技术的未来发展趋势和挑战进行了展望。
Navigation, path planning and control technologies are key components of AUVs to realize its autonomous sailing and operations. Developments of AUV navigation technology have been analyzed from points of view of hardware components and data fusion algorithms,evolutions of AUV path planning technology have been investigated from aspects of traditional algorithms and intelligence algorithms,developments of AUV control technology have been introduced from aspects of control algorithms and control allocation strategies. Challenges and future development tendencies of AUVs are being discussed in the final of this paper.
2023,45(12): 51-56 收稿日期:2022-06-28
DOI:10.3404/j.issn.1672-7619.2023.12.010
分类号:U664.82
作者简介:李冀永(1992-),男,博士,工程师,研究方向为水下机器人技术
参考文献:
[1] 吴有生, 赵羿羽, 郎舒妍, 等. 智能无人潜水器技术发展研究[J]. 中国工程科学, 2020, 22(6): 26–31
[2] 徐玉如, 李彭超. 水下机器人发展趋势[J]. 自然杂志, 2011, 33(03): 125–132+2
[3] 黄海, 张国成, 杨溢. 水下无人航行器机械手系统动力学建模与协调运动轨迹优化[J]. 上海交通大学学报, 2016, 50(09): 1437–1443+1451
[4] 黄琰, 李岩, 俞建成, 等. AUV智能化现状与发展趋势[J]. 机器人, 2020, 42(2): 215–231
[5] 秦洪德, 孙延超. AUV关键技术与发展趋势[J]. 舰船科学技术, 2020, 42(23): 25–28
[6] 徐博, 白金磊, 郝燕玲, 等. 多AUV协同导航问题的研究现状与进展[J]. 自动化学报, 2015, 41(3): 445–461
[7] 黄玉龙, 张勇刚, 赵玉新. 自主水下航行器导航方法综述[J]. 水下无人系统学报, 2019, 27(3): 232–253
[8] 孙玉山, 冉祥瑞, 张国成, 等. 智能水下机器人路径规划研究现状与展望[J]. 哈尔滨工程大学学报, 2020, 41(8): 1111–1116
[9] 赵苗, 高永琪, 吴笛霄, 等. 复杂海战场环境下AUV全局路径规划方法[J]. 国防科技大学学报, 2021, 43(1): 41–48
[10] 姜春萌. 自主水下机器人智能控制与参数优化技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.
[11] 乔磊. 复杂海洋环境下水下无人航行器定深与三维轨迹跟踪控制[D]. 上海: 上海交通大学, 2020.
[12] 杨峻巍. 水下航行器导航及数据融合技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
[13] ALAMEDA W. SEADEVIL A totally integrated inertial navigation system (INS) solution[J]. Proceedings of the Underwater Intervention Symposium, 2002.
[14] MARCO D B, HEALEY A J. Command, control, and navigation experimental results with the NPS ARIES AUV[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 466–476
[15] 赵俊波, 葛锡云, 冯雪磊, 等. 水下SINS/DVL组合导航技术综述[J]. 水下无人系统学报, 2018, 26(1): 2–9
[16] LARSEN M B. High Performance doppler-inertial navigation-experimental results[C]//Ocean 2000 MTS/IEEE Conference and Exhibition. RI, USA: IEEE, 2000.
[17] JALVING B, GADE K, SVARTVEIT K, et al. DVL velocity aiding in the Hugin 1000 integrated inertial navigation system[J]. Modeling, Identification and Control, 2004, 25(4): 223–235
[18] LOEBIS D, ET R et al. A fuzzy Kalman filter optimized using a multi-objective genetic algorithm for enhanced autonomous underwater vehicle navigation[J]. Proceedings of the I MECH E Part M Journal of Engineering for the Maritime Envi, 2004.
[19] 张晓娟, 梁捷. 基于扩展卡尔曼滤波器的AUV导航定位数据融合[J]. 测控技术, 2016, 35(6): 5
[20] 张涛, 石宏飞, 陈立平, 等. 基于UKF的SINS/LBL水下AUV紧组合定位技术[J]. 中国惯性技术学报, 2016, 24(5): 638–642
[21] KARIMI M, BOZORG M, KHAYATIAN A R. A comparison of DVL/INS fusion by ukf and ekf to localize an autonomous underwater vehicle[C]//Proceeding of the 2013 RSI/ISM International Conference on Robotics and Mechatronics. Tehran, Iran: IEEE, 2013.
[22] 郭银景, 侯佳辰, 吴琪, 等. AUV全局路径规划环境建模算法研究进展[J]. 舰船科学技术, 2021, 43(17): 12–18
[23] KATHIB O. Real-time obstacle avoidance for manipulators and mobile robots[M]. Springer New York, 1986.
[24] YUN G , WEI Z , GONG F , et al. Dynamic path planning for underwater vehicles based on modified artificial potential field method[C]// Digital Manufacturing and Automation (ICDMA), 2013 Fourth International Conference on. IEEE, 2013.
[25] CHENG C , ZHU D , BING S , et al. Path planning for autonomous underwater vehicle based on artificial potential field and velocity synthesis[C]// 2015 IEEE 28th Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2015.
[26] CHEN S, LIU C W , HUANG Z P , et al. Global path planning for auv based on sparse A* search algorithm[J]. Torpedo Technology, 2012.
[27] GARAU B , ALVAREZ A , OLIVER G . Path planning of autonomous underwater vehicles in current fields with complex spatial variability: an A* approach[C]// 2005.
[28] WIIG M S , PETTERSEN K Y , KROGSTAD T R . A 3D reactive collision avoidance algorithm for underactuated underwater vehicles[J]. Journal of Field Robotics, 2020(5).
[29] 占银. 基于蚁群算法和人工势场法的水下机器人路径规划研究[D]. 长春: 吉林大学, 2020.
[30] 祖伟. 基于粒子群优化算法的水下潜器实时路径规划技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2008.
[31] TANAKITKORN K, WILSON P A, TURNOCK S R, et al. Grid-based GA path planning with improved cost function for an over-actuated hover-capable AUV[C]// AUV 2014. IEEE, 2014.
[32] 朱大奇, 孙兵, 李利. 基于生物启发模型的AUV三维自主路径规划与安全避障算法[J]. 控制与决策, 2015, 30(05): 798–806
[33] 冉祥瑞. 基于分层强化学习的AUV路径规划方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[34] 徐杨. 海生物抓取捕捞水下机器人运动规划研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
[35] YOO B , KIM J . Path optimization for marine vehicles in ocean currents using reinforcement learning[J]. Journal of Marine Science & Technology, 2016.
[36] YIN C, ZHANG W. Concise deep reinforcement learning obstacle avoidance for underactuated unmanned marine vessels[J]. Neurocomputing, 2018, 272(jan.10): 63–73
[37] KHODAYARI M H, BALOCHIAN S. Modeling and control of autonomous underwater vehicle (AUV) in heading and depth attitude via self-adaptive fuzzy PID controller[J]. Journal of Marine Science and Technology, 2015, 20(3): 559–578
[38] 闫敬, 李文飚, 杨晛, 等. 融合Q学习与PID控制器的AUV跟踪控制[J]. 水下无人系统学报, 2021, 29(5): 565–574
[39] CIESLAK P , RIDAO P , GIERGIEL M . Autonomous underwater panel operation by GIRONA500 UVMS: A practical approach to autonomous underwater manipulation[C]// 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2015.
[40] 刘学敏, 徐玉如. 水下机器人运动的S面控制方法[J]. 海洋工程, 2001(3): 81–84
[41] 李岳明. 多功能自主式水下机器人运动控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2013.
[42] LI J , HUANG H , WAN L, et al. Hybrid strategy-based coordinate controller for an underwater vehicle manipulator system using nonlinear disturbance observer[J]. Robotica, 2019: 1-22.
[43] 孙俊松. 欠驱动AUV的轨迹跟踪反步滑模控制研究[D]. 大连: 大连海事大学, 2020.
[44] 韩亚楠. 复杂海洋环境下的欠驱动AUV路径跟踪控制[D]. 大连: 大连海事大学, 2020.
[45] 贾鹤鸣. 基于反步法的欠驱动UUV空间目标跟踪非线性控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2012.
[46] 徐昊. X舵UUV节能路径跟踪控制技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.
[47] LIANG X, QU X , WAN L, et al. Three-dimensional path following of an underactuated auv based on fuzzy backstepping sliding mode control[J]. International Journal of Fuzzy Systems, 2017.
[48] 黄哲敏, 程舟济, 夏英凯, 等. X 舵自主式水下航行器抗横滚控制研究与操纵性试验 [J]. 中国舰船研究, 2021, 16(S1): 19-30.
[49] FOSSEN T I, JOHANSEN T A. A Survey of control allocation methods for ships and underwater vehicles[C]// 2006 14th Mediterranean Conference on Control and Automation. IEEE, 2007.
[50] SARKAR N, PODDER T K, ANTONELLI G. Fault-accommodating thruster force allocation of an AUV considering thruster redundancy and saturation[J]. IEEE Transactions on Robotics & Automation, 2002, 18(2): 223–233
[51] 王小平. X舵AUV控制分配优化与容错控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
[52] 张英浩. X舵智能水下机器人运动控制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.