以某AUV为研究对象,基于六自由度空间运动数学模型,对AUV进行受力分析,应用工程中常用的增量式PID控制方法,形成AUV水下空间运动自动控制仿真计算的数学模型。分别采用空间运动数学模型和平面运动数学模型进行典型空间运动仿真计算。通过对比分析可以看出,当AUV在水下进行空间运动时,其水平面运动与垂直面运动之间的耦合作用不可忽略,该耦合作用将直接影响AUV的操纵律和空间运动的控制律。研究结果可为AUV水下空间运动的自动控制研究、设计和应用等提供参考,具有一定的工程价值。
The mathematical model of single plane motion is no longer applicable. Taking an AUV as the research object, based on the 6-DOF spatial motion mathematical model, the force analysis of AUV is carried out. And the incremental PID control method commonly used in engineering is applied to form the mathematical model of AUV underwater space motion automatic control simulation calculation. The space motion mathematical model and plane motion mathematical model are used to simulate the typical space motion. Trough comparative analysis, it can be seen that when AUV moves in space under water, the coupling effect between horizontal and vertical plane motion cannot be ignored. And this coupling effect will directly affect the control law of AUV and space motion. The research results can provide reference for the research, design and application of AUV automatic control of underwater space motion, and have certain engineering value.
2023,45(12): 57-62 收稿日期:2022-06-02
DOI:10.3404/j.issn.1672-7619.2023.12.011
分类号:U674.941
作者简介:胡中惠(1988-),男,高级工程师,研究方向为潜水器总体设计研究
参考文献:
[1] 吴有生, 赵羿羽, 郎舒妍, 等. 智能无人潜水器技术发展研究[J]. 中国工程科学, 2020, 22(6): 26–31
[2] 罗建超, 朱心科. 基于改进粒子群优化算法的自主水下航行器深度控制[J]. 舰船科学技术, 2022, 44(8): 64–68
LUO Jianchao, ZHU Xinke. Depth control of autonomous underwater vehicle based on improved particle swarm optimization algorithm[J]. Ship Science and Technology, 2022, 44(8): 64–68
[3] 雷江航, 姜向远, 栾义忠, 等. 基于L1自适应理论的AUV深度控制器设计[J]. 中国舰船研究, 2021, 16(5): 150–157
LEI Jianghang, JIANG Xiangyuan, LUAN Yizhong, et al. Design of AUV depth controller based on L1 adaptive theory[J]. Chinese Journal of Ship Research, 2021, 16(5): 150–157
[4] 饶志荣, 董绍江, 王军, 等. 基于干扰观测器的AUV深度自适应终端滑模控制[J]. 北京化工大学学报(自然科学版), 2021, 48(1): 103–110
[5] 李泽宇, 刘卫东, 申高展, 等. 水下航行器空间机动滑模变结构控制仿真[C]// 2015年中国西部声学学术交流会论文集, 2015: 4.
[6] 梅新华, 周祥龙. 基于BP神经网络的双舵型AUV深度控制算法应用[J]. 水雷战与舰船防护, 2017, 25(3): 79–82
[7] 胡坤, 何斌, 张建华, 等. 波浪环境下潜艇近水面操纵特性仿真分析[J]. 舰船科学技术, 2017, 44(2): 6–11
HU Kun, HE Bin, ZHANG Jian-hua, et al. Simulation analysis of submarine maneuvering characteristics near water surface in wave environment[J]. Ship Science and Technology, 2017, 44(2): 6–11
[8] 聂为彪, 钱治强, 吴铭, 等. 水下航行器横向操纵性运动预报设计与仿真[J]. 舰船科学技术, 2021, 43(S1): 22–26
NIE Weibiao, QIAN Zhiqiang, WU Ming, et al. Analysis on navigation scheme and key technology of the underwater vehicle[J]. Ship Science and Technology, 2021, 43(S1): 22–26
[9] 于浩洋, 李普强. 无缆自主式水下机器人航向的模糊控制[J]. 黑龙江工程学院学报, 2017, 31(5): 33–36
[10] 陈恳, 刘涛, 杜新光, 等. 基于自适应神经网络滑模控制的常压潜水装具航向控制器设计[J]. 中国造船, 2018, 59(1): 187–196
CHEN Ken, LIU Tao, DU Xinguang, et al. Design of course controller for atmospheric diving suit(ads) based on sliding mode control with adaptive neural network[J]. Shipbuilding of China, 2018, 59(1): 187–196
[11] 施生达. 潜艇操纵性[M]. 北京: 国防工业出版社, 1995.
[12] 魏延辉. UVMS系统控制技术[M]. 哈尔滨: 哈尔滨工程大学出版社, 2017.