本文提出在构建模糊水下无人航行器运动学模型的前提下,设计一款基于时变干扰观测器的连续滑模控制器。干扰观测器把系统误差及外界干扰等效到控制端,连续滑模控制器通过切换控制量使系统趋于平衡点。该控制器可快速响应,且对于模型参数变化及外界干扰不敏感,具有较强的鲁棒性。此外,将直线、正弦波及自定义曲线设置为预定航向,通过Matlab/Simulink进行仿真验证水下无人航行器是否可以实现在复杂水域下的轨迹跟踪,达到航向控制目的。
This paper proposes to design a continuous sliding mode controller based on a time-varying disturbance observer under the premise of constructing a fuzzy submersible kinematic model. The disturbance observer equates the system error and external disturbance to the control side, and the continuous sliding mode controller converges the system to the equilibrium point by switching the control quantity. The controller can respond quickly and is insensitive to model parameter changes and external disturbances, and has strong robustness. In addition, straight line, sinusoidal wave and custom curve are set as the predetermined heading, and the simulation is carried out by Matlab/Simulink to verify whether the submersible can achieve the trajectory tracking in complex waters and achieve the heading control purpose.
2023,45(12): 63-68 收稿日期:2022-08-12
DOI:10.3404/j.issn.1672-7619.2023.12.012
分类号:TP13
基金项目:国家自然科学基金资助项目(62001428);山西省重点研发计划(2021020101010);山西省回国留学人员科研资助项目(2022-144)
作者简介:杨晨宇(1998-),女,硕士研究生,研究方向为水下无人航行器自主控制。
参考文献:
[1] 吕厚权, 郑荣, 杨斌, 等. 水下自主机器人航向控制算法应用研究[J]. 舰船科学技术, 2020, 42(2): 7
LV Houquan, ZHENG Rong, YANG Bing, et al. Research on the application of underwater autonomous robot heading control algorithm[J]. Ship Science and Technology, 2020, 42(2): 7
[2] 罗伟林, 李新宇. 水下机器人航向模糊PID控制[C]//第二十届中国系统仿真技术及其应用学术年会(20th CCSSTA 2019).
LUO Weilin, LI Xinyu. Underwater robot heading fuzzy PID control[C]// The 20th Annual China Conference on System Simulation Technology and its Applications (20th CCSSTA 2019).
[3] 王永涛. 基于粒子群优化反步法的船舶航向控制器设计[J]. 中国航海, 2020, 43(1): 78–82
WANG YT. Design of ship heading controller based on particle swarm optimization backstepping method[J]. China Navigation, 2020, 43(1): 78–82
[4] 刘志强, 叶曦, 钱同惠. 基于变论域的无人艇航向模糊控制策略[J]. 江汉大学学报: 自然科学版, 2022.
LIU Zhiqiang, YE Xi, QIAN Tonghui. Fuzzy control strategy of unmanned boat heading based on variable theory domain[J]. Journal of Jianghan University: Natural Science Edition, 2022.
[5] 袁昌斌, 董升亮, 李超. 滑模变结构在AUV航向控制中的应用[J]. 现代电子技术, 2012, 35(20): 117–120
YUAN Changbin, DONG Shengliang, LI Chao. Application of sliding mode variable structure in AUV heading control[J]. Modern Electronics Technology, 2012, 35(20): 117–120
[6] 曾俊宝, 李硕, 刘鑫宇, 等. 便携式自主水下机器人动力学建模方法研究[J]. 计算机应用究, 2018, 35(6): 1747–1750
ZENG Junbao, LI Shuo, LIU Xingyu, et al. Research on dynamic modeling method of portable autonomous underwater robot[J]. Journal of computer applications, 2018, 35(6): 1747–1750
[7] 魏延辉, 杜振振, 陈巍, 等. 多翼自治水下机器人动力学建模与姿态控制[J]. 华中科技大学学报:自然科学版, 2015, 43(6): 106–111
WEI Yanhui, DU Zhenzhen, CHEN Wei, et al. Dynamic modeling and attitude control of multi-wing autonomous underwater vehicle[J]. Journal of Huazhong University of Science and Technology:Natural Science Edition, 2015, 43(6): 106–111
[8] 齐强, 陈志刚, 周源. 航行器水中运动数学模型及数值仿真[J]. 舰船科学技术, 2014, 36(5): 80–83
QI Qiang, CHEN Zhigang, ZHOU Yuan. Mathematical model and numerical simulation of underwater vehicle motion[J]. Ship Science and Technology, 2014, 36(5): 80–83
[9] CHEN W H, BALLANCE D J. A nonlinear disturbance observer for robotic manipulators[J]. Industrial Electronics IEEE Transactions on, 2000, 47(4): 932–938
[10] 乔冰, 刘鑫, 袁龙. 大深度潜航器水下空间运动建模与仿真[J]. 数字海洋与水下攻防, 2020, 3(1): 65–70
QIAO Bing, LIU Xing, YUAN Long. Modeling and simulation of underwater space motion for deep underwater vehicle[J]. Digital Ocean & Underwater Attack and Defense, 2020, 3(1): 65–70
[11] LAKHEKAR G V , ROY R G. Heading control of an underwater vehicle using dynamic fuzzy sliding mode controller[C]// International Conference on Circuit. IEEE, 2015.
[12] 于靖, 陈谋, 姜长生. 基于干扰观测器的非线性不确定系统自适应滑模控制[J]. 控制理论与应用, 2014(8): 993–999
YU Jing, CHEN Mou, JIANG Changsheng. Adaptive sliding mode control for nonlinear uncertain systems based on disturbance observer[J]. Control Theory & Applications, 2014(8): 993–999
[13] ZHOU H, LIU K, LI Y, et al. Dynamic sliding mode control based on multi-model switching laws for the depth control of an autonomous underwater vehicle[J]. International Journal of Advanced Robotic Systems, 2015, 12(7): 106
[14] 刘青, 黄茹楠, 陈勇, 等. 水下航行器智能航向滑模控制[J]. 电子技术应用, 2017, 43(7): 117–121
LIU Qing, HUANG Runan, CHEN Yong et al. Intelligent heading sliding mode control for underwater vehicle[J]. Application of Electronic Technique, 2017, 43(7): 117–121
[15] 闫茂德, 许化龙, 贺昱曜. 自主水下潜航器的自适应反演变结构控制器设计[J]. 火力与指挥控制, 2005, 30(3): 18–21
YAN Maode, XU Hualong, HE Yuyao. Design of adaptive anti-evolution structure controller for autonomous underwater vehicle[J]. Fire Control & Command Control, 2005, 30(3): 18–21
[16] YANG I, BYUN S, SEO B, et al. Robust dynamic inversion based on sliding mode control for autonomous underwater vehicles - sciencedirect[J]. IFAC Proceedings Volumes, 2013, 46(10): 79–84
[17] WANG D, SHEN Y, WAn J, et al. Sliding mode heading control for AUV based on continuous hybrid model-free and model-based reinforcement learning[J]. Applied Ocean Research, 2022, 118: 102960