相对于固定式风机,海上浮式风力机系统的结构与受到的环境载荷更为复杂。为模拟其动力响应,选择合理的动力学建模方法致关重要。本文以OC4-NERL5MW浮式风力机为例,分别建立浮式风机系统的单刚体动力学模型与刚-柔耦合动力学模型,对比研究2种模型在计算浮式风机系统动力响应的差异。结果表明,2种模型在较高工况的运动标准差有一定差别,其他情况的运动响应及气动转矩的均值和标准差差别都不大。刚体模型有更高的计算效率,可用于设计初始阶段浮式风机系统的动力学参数及方案筛选的大规模计算;刚柔耦合模型有更高的计算精度,可用于后续的动力学参数精细校核。
Compared with fixed wind turbine, the structure and environmental load of FOWT (floating offshore wind turbine) are both more complex. It is important to choose a reasonable dynamic model to simulate dynamic response of the FOWT. Taking OC4-NERL5MW wind turbine as an example, this paper establishes the single rigid body and rigid-flexible coupling dynamic models of FOWT, respectively. We compares the differences between the two models in calculating the dynamic response of FOWT. The results show that there is a certain difference in the motion standard deviation of the two models under higher environmental conditions. For other cases, it has little difference in the mean and standard deviation of motion response and aerodynamic torque. The rigid body model has higher computational efficiency and can be used for large-scale calculation of dynamic parameters and scheme selection of FOWT in the initial stage of design. The rigid flexible coupling model has higher accuracy and can be used for subsequent fine verification of dynamic parameters.
2023,45(12): 73-81 收稿日期:2022-05-18
DOI:10.3404/j.issn.1672-7619.2023.12.014
分类号:TK83
作者简介:杨礼东(1987-),男,硕士,高级工程师,研究方向为电力工程设计
参考文献:
[1] 李焱. Spar型浮式风力机系统耦合动力响应特性研究[D]. 天津: 天津大学, 2018.
[2] MINU J, SEUNGMIN L, SOOGAB L. Unsteady aerodynamics of offshore floating wind turbines in platform pitching motion using vortex lattice method[J]. Renewable Energy, 2014, 65(5): 207–212
[3] SHEN X, CHEN J G, HU P, et al. Study of the unsteady aerodynamics of floating wind turbines[J]. Energy, 2018, 145(c): 793–809
[4] JONKMAN J M. Dynamic modeling and loads analysis of an offshore floating wind turbine[D]. University of Colorado, 2007.
[5] ROBERTSON A N, JONKMAN J M. Loads analysis of an offshore floating wind turbine concepts[C]//Proceedings of the Twenty-first International Offshore and Polar Engineering Conference. Maul, Hawaii, USA, 2011.
[6] 刘利琴, 肖昌水, 郭颖, 等. 基于Jourdain原理和有限元离散的浮式风机动力响应分析[J]. 哈尔滨工程大学学报, 2020, 41(3): 309–317
[7] 叶江舟, 胡志强, 王晋. 张力腿式浮式风机耦合动力响应理论模型与数值实现[J]. 海洋工程, 2018, 36(2): 100–107
[8] 陈嘉豪, 刘格梁, 胡志强. 海上浮式风机时域耦合程序原理及其验证[J]. 上海交通大学学报, 2019, 53(12): 50–59
[9] 陈嘉豪, 胡志强. 半潜式海上浮式风机气动阻尼特性研究[J]. 力学学报, 2019, 51(4): 293–303
[10] JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5-MW Reference Wind Turbine for Offshore System Development[R]. National Renewable Energy Laboratory (NREL), 2009.
[11] 刘利琴, 肖昌水, 郭颖. 海上浮式水平轴风力机气动特性研究[J]. 太阳能学报, 2021, 42(1): 302–309