海上船舶的远距离目标探测和跟踪技术不论在军事领域还是民用领域都具有广泛的应用,比如远距离目标侦察、海上舰船管理等,远距离目标探测与跟踪技术通常依托于船载雷达,近年来,为了提高船舶雷达的目标探测和跟踪精度,雷达阵列技术、多传感器技术被广泛使用。本文针对船舶多雷达探测器下的目标跟踪场景,重点介绍一种基于卡尔曼滤波算法的远距离目标跟踪数据融合算法,通过多传感器的数据融合技术,提高船舶远距离目标的跟踪精度,具有一定的应用价值。
The long-range target detection and tracking technology of ships at sea has a wide range of applications in both military and civilian fields, such as long-range target reconnaissance, ship management and so on. The long-range target detection and tracking technology usually relies on shipborne radar. In recent years, in order to improve the accuracy of ship radar's target detection and tracking. Radar array technology and multi - sensor technology are widely used. Aiming at the target tracking scene under the ship's multi-radar detector, this paper focuses on introducing a remote target tracking data fusion algorithm based on Kalman filter algorithm. Through the multi-sensor data fusion technology, the ship's remote target tracking accuracy can be improved, which has important application value.
2023,45(12): 144-147 收稿日期:2022-12-13
DOI:10.3404/j.issn.1672-7619.2023.12.028
分类号:U624.25
基金项目:嵩山实验室预研项目(YYJC032022022);河南省2023年科技攻关项目(232102210059)
作者简介:余建国(1975-),男,硕士,副教授,主要从事深度学习及软件开发技术研究
参考文献:
[1] 曹轲, 谭冲, 刘洪, 等. 基于改进灰狼算法优化BP神经网络的无线传感器网络数据融合算法[J]. 中国科学院大学学报, 2022, 39(2): 232–239
CAO Ke, TAN Chong, LIU Hong, et al. Data fusion algorithm of wireless sensor network based on improved gray wolf algorithm to optimize BP neural network[J]. Journal of University of Chinese Academy of Sciences, 2022, 39(2): 232–239
[2] 张红, 程传祺, 徐志刚, 等. 基于深度学习的数据融合方法研究综述[J]. 计算机工程与应用, 2020, 56(24): 1–11
ZHANG Hong, CHENG Chuan-qi, XU Zhi-gang, et al. Review of data fusion methods based on deep learning[J]. Computer Engineering and Applications, 2020, 56(24): 1–11
[3] 余辉, 梁镇涛, 鄢宇晨. 多来源多模态数据融合与集成研究进展[J]. 情报理论与实践, 2020, 43(11): 169–178
YU Hui, LIANG Zhen-tao, YAN Yu-chen. Research progress on multi-source multimodal data fusion and integration[J]. Information Theory & Practice, 2020, 43(11): 169–178
[4] 冯成. 多源异构数据融合关键技术研究[D]. 北京: 北京邮电大学, 2020.
FENG Cheng. Research on key technologies of multi-source heterogeneous data fusion[D]. Beijing: Beijing University of Posts and Telecommunications, 2020.