为探究带攻角杆状弹高速入水的侵彻特性,采用LS-DYNA中的流固耦合算法,研究不同攻角下弹体速度、长径比对弹体入水后的剩余特性、空泡形状及弹体姿态的影响。结果表明:长杆弹入水后会发生弹体姿态翻转,经过一段时间弹体姿态稳定,而攻角较小时会发生二次翻转现象;长杆弹带攻角高速入水后弹头将产生非对称的墩粗侵蚀变形、整体塑性弯曲变形及2种变形模式的耦合;长径比小的弹体其破坏能力较小,弹道偏航较小,但姿态偏转较大;长径比较大的弹体破坏能力强,弹体姿态偏转较小,但弹道偏航距离较大;长径比越大的弹体对攻角的变化越敏感。
To reveal the penetration characteristics of long- rod projectile with angle of attack entering water at high velocity, fluid-structure coupling algorithm in LS-DYNA was adopted to study the influence of velocity and length-diameter ratio of projectile body at different angle of attack on residual characteristics, cavity shape and attitude of projectile body after entering water. The results show that the attitude of the long-rod projectile will turn over after it hits the water, and the attitude of the long rod will be stable after a period of time. After entering water at high speed with the angle of attack, the warhead will produce asymmetric coarse erosion deformation, integral plastic bending deformation and coupling of the two deformation modes. The projectile with small aspect ratio has smaller damage ability, smaller trajectory yaw, but larger attitude deflection. The projectile with a large aspect ratio has stronger damage ability, smaller attitude deflection, but larger trajectory yaw distance. The larger the aspect ratio is, the more sensitive the projectile is to the change of the Angle of attack.
2023,45(13): 6-13 收稿日期:2022-06-25
DOI:10.3404/j.issn.1672-7649.2023.13.002
分类号:U663.85
基金项目:国家自然科学基金资助项目(51979277)
作者简介:王克(1997-),男,硕士研究生,研究方向为舰船抗爆抗冲击
参考文献:
[1] 朱锡, 张振华, 刘润泉, 等. 水面舰艇舷侧防雷舱结构模型抗爆试验研究[J]. 爆炸与冲击, 2004, 24(2): 133–139
ZHU X, ZHANG Z H, LIU R Q, et al. Experimental study on the explosion resistance of cabin near shipboard of surface warship subjected to underwater contact explosion[J]. Explosion and Shock waves, 2004, 24(2): 133–139
[2] 卢芳云, 李翔宇, 林玉亮, 战斗部结构与原理[M], 北京: 科学出版社, 2009
[3] 张凯奇. 水下EFP及其终点效应的研究[D]. 太原: 中北大学, 2020.
[4] 吴凡达. 聚能-爆破战斗部对潜艇多层壳体毁伤效应研究[D]. 太原: 中北大学, 2020.
[5] 陈兴, 周兰伟, 李福明, 等. 杆式射流对充液防护结构的毁伤机理及影响因素的数值模拟[J]. 高压物理学报, 2021, 35(2): 145–155
CHEN X, ZHOU L W, LI F M. et al. Numerical simulation on damage mechanism and influencing factors of JPC shaped charge on liquid-filled defensive structure[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 145–155
[6] 王雅君, 李伟兵, 王晓鸣, 等. EFP水中飞行特性及侵彻间隔靶的仿真与试验研究[J]. 含能材料, 2017, 25(6): 459–465
WANG Y J, LI W B, WANG X M, et al. Numerical simulation and experimental study on flight characteristics and penetration against spaced targets of EFP in water[J]. Chinese Journal of Energrtic Materials, 2017, 25(6): 459–465
[7] 吴子奇. 弹目结合的反舰导弹对目标舰船靶标侵彻毁伤研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[8] 杨莉, 张庆明, 巨圆圆. 爆炸成型弹丸对含水复合装甲侵彻的实验研究[J]. 北京理工大学学报, 2009, 29(3): 197–200
YANG L, ZHANG Q M, JU Y Y. Experimental study on the penetration of explosively formed projectile against water-partitioned armor[J]. Transactions of Beijing Institute of Technology, 2009, 29(3): 197–200
[9] 许通通. 串联聚能装药水下作用研究[D]. 北京: 北京理工大学, 2017.
[10] SONG Z J, DUAN W Y, XU G D, et al. Experimental and numerical study of the water entry of projectiles at high oblique entry speed[J]. Ocean Engineering, 2020, 211: 107574
[11] CHEN C , X YUAN, X LIU, et al. Experimental and numerical study on the oblique water-entry impact of a cavitating vehicle with a disk cavitator[J]. International Journal of Naval Architecture and Ocean Engineering, 2018, 11.
[12] CHEN C, YUAN X, LIU X, et al. Experimental and numerical study on the oblique water-entry impact of a cavitating vehicle with a disk cavitator[J]. International Journal of Naval Architecture and Ocean Engineering, 2019, 11(1): 482–494
[13] 李天雄. 入水弹道转向的特性研究[D]. 南京: 南京理工大学, 2020.
[14] MIRZAEI M, TAGHVAEI H, ALISHAHI MM. Mathematical modeling of the oblique water-entry of cylindrical projectiles[J]. Ocean Engineering, 2020, 205: 107257
[15] ALEKSEEVSKII V P. Penetration of a rod into a target at high velocity. Combustion, Explosion, and Shock Waves, 1966, 2: 63-66.
[16] TATE A. A theory for the deceleration of long rods after impact. Journal of the Mechanics & Physics of Solids, 1967, 15: 387-399.
[17] GAO S, LI D, HOU H, et al. Investigation on dynamic response of liquid-filled concave cell structures subject to the penetration of high-speed projectiles[J]. Thin-Walled Structures, 2020, 157(2): 107119
[18] 仲强, 侯海量, 李典, 等. 陶瓷/液舱复合结构抗侵彻机理试验研究[J]. 船舶力学, 2017, 10(21): 1282–1290
ZHONG Q, HOU H L, LI D. et al. Experimental study on anti-penetration mechanism of ceramic/fluid cabin composite structure[J]. Journal of Ship Mechanics, 2017, 10(21): 1282–1290
[19] 李典, 朱锡, 侯海量, 等. 高速杆式弹体侵彻下蓄液结构载荷特性的有限元分析[J]. 爆炸与冲击, 2016, 36(1): 1–8
LI D, ZHU X, HOU H L, et al. Numerical analysis of energy Dissipation mechanism of liquid -filled structure subjected to high velocity rod projectile penetration[J]. Explosion and Shock Waves, 2016, 36(1): 1–8
[20] 李典, 侯海量, 朱锡, 等. 高速杆式弹侵彻下蓄液结构耗能机理数值分析[J]. 海军工程大学学报, 2018, 30(2): 60–65
LI D, ZHU X, HOU H L. Finite element analysis of load characteristic of liquid- filled structure subjected to high velocity long- rod projectile penetration[J]. Journal of Naval University of Engineering, 2018, 30(2): 60–65
[21] 李典, 朱锡, 侯海量. 高速杆式弹侵彻下蓄水结构防护效能数值分析[J]. 海军工程大学学报, 2015, 27(4): 21–25+30
LI D, ZHU X, HOU H L. Numerical analysis of protective efficacy Of water-filled structure subjected to high velocity long-rod projectile penetration[J]. Journal of Naval University of Engineering, 2015, 27(4): 21–25+30
[22] 朱珠, 袁绪龙, 刘维. 柱体大攻角入水弹道建模与仿真[J]. 火力与指挥控制, 2015, 40(2): 13–18+23
ZHU Z, YUAN X L, LIU W. On modeling and simulation of cylinder droppling in water with high angle of attack[J]. Fire Control & Command Control, 2015, 40(2): 13–18+23
[23] 汪振, 吴茂林, 戴文留. 大口径弹体高速入水载荷特性研究[J]. 弹道学报, 2020, 32(1): 15–22
WANG Z, WU M L, DAI K L. Study on load characteristics of high-speed water-entry of large caliber projectile[J]. Journal of Ballistics, 2020, 32(1): 15–22
[24] 吴晓光, 李典, 吴国民, 等. 高速杆式弹侵彻下蓄液结构的防护能力[J]. 爆炸与冲击, 2018, 38(1): 76–84