在深海应急搜救过程中,通常要使用深拖系统、AUV、ROV等不同功能的深海装备交替作业,在目标海域开展大范围搜探、疑似目标确认、处置作业等任务。多种深海装备同时配合使用,不仅支援保障难度大,而且装备布放回收占用大量作业时间,导致作业效率低、耗费大。针对上述问题,提出一种融合作业级ROV与深海拖曳系统功能的新型潜水器—拖曳式ROV,其具有高速拖曳和处置作业双工作模式,并可在水下按需快速切换。结构方面,通过双电机由行星齿轮差速器耦合驱动一组垂向变形机构组成变结构装置,并结合冗余设计,实现高速拖曳/处置作业模式的可靠切换;外形方面,拖曳式ROV引入了低阻线型,通过CAD参数化设计结合CFD阻力分析,获得了低阻力流线型外观。
In the deep sea recovery missions, deep-sea vehicles like deep-tow system, AUV and ROV are deployed in the target area to alternately undertake operations such as wide area search, suspected target confirming and handling. By using different kinds of vehicles in the one mission, not only it will be difficult to hold the support, but spend a lot of time to launch and recovery the vehicles, creating a low efficiency and a high cost. In this paper, a new underwater vehicle that combines features of both work class ROV and deep-towed system is presented—towed-ROV, with the ability to switch modes underwater rapidly between being towed or handling. In the aspect of structure, the dual-motors are combined by a planetary gear differential to drive the vertical lifters as the transformation system, enabling the feature of mode switching reliably with redundant design. In the aspect of body-shape, the towed-ROV has a low-resistance shape after parametric curve design with CAD and CFD analysis tools.
2023,45(13): 69-75 收稿日期:2022-05-27
DOI:10.3404/j.issn.1672-7649.2023.13.014
分类号:TP242
作者简介:陈鑫(1998-),男,硕士研究生,研究方向为遥控水下机器人设计
参考文献:
[1] 封锡盛, 李一平, 徐会希, 等. 深海自主水下机器人发展及其在资源调查中的应用[J]. 中国有色金属学报, 2021, 31(10): 2746–2756
FENG X S, LI Y P, XV H X, LI Z G. Development of deep-sea autonomous underwater vehicle and its applications in resource survey[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(10): 2746–2756
[2] KITCHNER S. U. S. Navy recovers F-35C from China South Sea [EB/OL]. https://www.c7f.navy.mil/Media/News/Display/Article/2953302, 2022.
[3] 顾临怡, 宋琦, 殷宏伟, 等. 基于ROV等载体的水下搜救流程综述[J]. 中国科学:信息科学, 2018, 48(9): 1137–1151
GU L Y, SONG Q, YING H W, et al. An overview of the underwater search and salvage process based on ROV[J]. Scientia Sinica (Informationis), 2018, 48(9): 1137–1151
[4] BUREAU A T S. The operational search for MH370-final report[J]. Australian Transport Safety Bureau, 2017.
[5] 平伟, 马厦飞, 张金华, 等. “海马”号无人遥控潜水器[J]. 舰船科学技术, 2017, 39(15): 138–141+145
PING W, MA X F, ZHANG J H, et al. HAIMA ROV[J]. Ship Science and Technology, 2017, 39(15): 138–141+145
[6] 曹金亮, 刘晓东, 张方生, 等. DTA-6000声学深拖系统在富钴结壳探测中的应用[J]. 海洋地质与第四纪地质, 2016, 36(4): 173–181
CAO J L, LIU X D, ZHANG F S, et al. Application of DTA-6000 acoustic deep-tow system to cobalt-rich crust investigation[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 173–181
[7] ACKERMAN E. Meet aquanaut: the subsea transformer[J]. Ocean News & Technology, 2018.
[8] SAIPEM. The robot that lives at the bottom of the sea[EB/OL].https://www.saipem.com/en/blog/robot-lives-bottom-sea, 2020.
[9] 张志君. 双驱动式差动减速器的设计与分析[D]. 哈尔滨: 哈尔滨工业大学, 2018.
[10] 刘天天. 自治水下航行器典型水动外形谱系研究[D]. 天津: 天津大学, 2018.
[11] 张凯, 杨贺然, 孙铁绳, 等. 适用于高航速下的ROV减阻结构设计研究[J]. 舰船科学技术, 2021, 43(9): 76–80.
ZHANG K, YANG H, SUN T S, et al. Research on drag reduction structure design of ROV for high speed[j]. Ship Science and Technology, 2021, 43(9): 76–80.