针对固定航线的小型游船,本文建立以质子交换膜燃料电池(PEMFC)水冷电堆和锂电池组成的船用混合电力推进实验平台。为适配模拟的船舶运行工况,通过DC/DC变换器调节PEMFC和锂电池间的功率分配,并利用LabVIEW上位机软件和PLC模块等数据采集单元,设计开发平台使用的监控系统。通过模拟船舶运行工况,考察在实现燃料电池与锂电池的能量分配的过程中,PEMFC工作温度、DC/DC变换器的输出电压波纹系数以及能量管理系统的响应时间。结果表明,PEMFC在最佳工作温度68 ℃运行,其误差控制在允许范围±2 ℃内;通过控制DC/DC变换器可以实现功率分配,其输出电压波纹系数不高于5%,过程响应时间为1 s。
For the typical operating conditions of a small type of cruise ship, this paper establishes an electric propulsion experimental platform consisting of a proton exchange membrane fuel cell (PEMFC) and a lithium battery. In order to achieve power adaption between the platform and the simulated ship operating conditions, the DC/DC converter is used to adjust the power distribution between fuel cells and lithium batteries, and the monitoring system of the platform is designed using data acquisition units such as LabVIEW and PLC module. The PEMFC operating temperature, the output voltage ripple factor of DC/DC converter and the response time of energy management system in the process of energy allocation between fuel cell and lithium battery are investigated by simulating the operating conditions of ships. The results show that PEMFC operates at the optimum operating temperature of 68 C, and its error is controlled within the allowable range of −2~2 ℃. Power distribution can be achieved by controlling the DC/DC converter, which has an output voltage ripple rate not exceeding 5% and the response time is limited to 1 s.
2023,45(13): 100-104 收稿日期:2022-05-11
DOI:10.3404/j.issn.1672-7649.2023.13.020
分类号:U671.99
基金项目:福建省自然科学基金资助项目(2020J05139, 2020J02041);福建省中青年教师教育科研项目(JAT190333);厦门市科技计划项目(3502Z20226011, 3502Z20173026)
作者简介:朱子文(1991-),男,博士,讲师,研究方向为燃料电池与船舶电力推进
参考文献:
[1] BALCOMBE P, BRIERLEY, LEWIS C, et al. How to decarbonise international shipping: options for fuels, technologies and policies[J]. Energy Conversion and Management, 2019, 182(2): 72–88
[2] 范爱龙, 贺亚鹏, 严新平, 等. 智能新能源船舶的概念及关键技术[J]. 船舶工程, 2020, 42(3): 9–14
[3] JOSE J, CARLOS A, CARLOS F G, et al. Analysing the possibilities of using fuel cells in ships[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2582–2866
[4] VAN BIERT L, GODJEVAC M, VISSER K, et al. A review of fuel cell systems for maritime applications[J]. Journal of Power Sources, 2016, 327: 345–364
[5] 潘其永, 朱子文, 郑青榕, 等. 典型船舶燃料电池推进系统研究[J]. 船舶工程, 2016, 38(4): 35–38
[6] 易明, 王甫, 王珺, 等. 燃料电池船舶应用形式及其关键技术[J]. 船舶工程, 2021, 43(3): 18–26
[7] 宝浩, 周娟, 于蓬. 燃料电池动力技术在船舶动力能效改进的应用[J]. 舰船科学技术, 2022, 44(5): 97–100
[8] 周洋, 杨发财, 李世安, 等. 电池动力船舶安全问题及对策探讨[J]. 舰船科学技术, 2022, 44(4): 91–96
[9] LIVINGSTONE K. First fuel cell passenger ship unveiled in Hamburg[J]. Fuel Cells Bulletin, 2008, 2008: 4–5
[10] SHIH N C, WENG B J, LEE J Y, et al. Development of a 20kW generic hybrid fuel cell power system for small ships and underwater vehicles[J]. International Journal of Hydrogen Energy, 2014, 39(25): 13894–13901
[11] 纪合超, 陈涛, 刘士华, 等. 质子交换膜燃料电池温度监控系统的设计与开发[J]. 太阳能学报, 2020, 41(11): 375–380
[12] 朱晓舟, 陈民武, 刘湘东, 等. 基于LabVIEW的PEMFC单电池电压巡检系统设计[J]. 储能科学与技术, 2018, 7(1): 123–127
[13] 徐创, 王建成, 卫东. 基于LabVIEW与CAN总线通讯的燃料电池监控系统设计[J]. 电源技术, 2018, 42(7): 1015–1017
[14] 彭赟, 彭飞, 刘志祥, 等. 基于PLC和LabVIEW的燃料电池测试系统设计[J]. 电源技术, 2016, 40(3): 575–579
[15] 朱子文. MOFs储氢应用于船舶燃料电池电力推进系统的研究[D]. 厦门: 集美大学, 2019.
[16] 陈世俨. 船用增程式燃料电池动力系统匹配研究[D]. 厦门: 集美大学, 2019.