构建船舶动力系统自动化风力发电模型,为分析风力发电情况提供参考。通过四分量法建立风速模型,得到风速值;依据风速值,构建舰船动力系统的风轮模型,得到风力矩;以风力矩为基础,构建舰船动力系统的传动系统模型,得到转动惯量;依据转动惯量,构建自动化风力发电的稳态与暂态模型,得到舰船动力系统风力发电的输出功率。实验证明该模型可有效合成风速曲线,得到高速端与低速端的转动惯量;在风速扰动下,该模型可有效获取船舶动力系统自动化风力发电的电能产出量,风速越大,电能产出量越大。
The automatic wind power generation model of ship power system is constructed to provide reference for the analysis of wind power generation. The wind speed model was established by the four-component method, and the wind speed value was obtained. According to the wind speed value, the wind wheel model of ship power system is constructed, and the wind torque is obtained. Based on the wind torque, the transmission system model of ship power system is constructed, and the moment of inertia is obtained. Based on the moment of inertia, the steady-state and transient models of automatic wind power generation are constructed, and the output power of wind power generation of ship power system is obtained. The experiment proves that the model can effectively synthesize the wind speed curve and obtain the rotational inertia of high speed and low speed. Under the wind speed disturbance, the model can effectively obtain the power output of the automatic wind power generation of the ship power system.
2023,45(13): 111-114 收稿日期:2023-01-06
DOI:10.3404/j.issn.1672-7649.2023.13.022
分类号:TM315
作者简介:黄开丰(1990-),男,本科,助理工程师,研究方向为船舶电气工程及其自动化
参考文献:
[1] 杨元龙, 孙玲, 张晓滨, 等. 基于数字孪生的舰船蒸汽动力总体模型框架研究[J]. 中国舰船研究, 2021, 16(2): 157–167
YANG Yuanlong, SUN Ling, ZHANG Xiaobin, et al. Analysis on the overall model framework of ship steam power based on digital twin[J]. Chinese Journal of Ship Research, 2021, 16(2): 157–167
[2] 周少伟, 吴炜, 张涛, 等. 舰船动力系统数字孪生技术体系研究[J]. 中国舰船研究, 2021, 16(2): 151–156
ZHOU Shaowei, WU Wei, ZHANG Tao, et al. Digital twin technical system for marine power systems[J]. Chinese Journal of Ship Research, 2021, 16(2): 151–156
[3] 张惊朝, 戴靠山, 施袁锋. 基于状态空间模型的大型风力机运行模态及不确定性分析[J]. 结构工程师, 2022, 38(1): 14–23
ZHANG Jingzhao, DAI Kaoshan, SHI Yuanfeng. Operational modal analysis with uncertainty quantification using state-space model for large-scale wind turbines[J]. Structural Engineers, 2022, 38(1): 14–23
[4] 宋子秋, 刘吉臻, 胡阳, 等. 考虑冰载荷的近海固定桩风电机组运行特性建模与分析[J]. 中国电机工程学报, 2021, 41(12): 4144–4153
SONG Ziqiu, LIU Jizhen, HU Yang, et al. Modeling and analysis of bottom fixed platform offshore wind turbine under ice loads[J]. Proceedings of the CSEE, 2021, 41(12): 4144–4153
[5] 季一润, 槐青, 袁茜, 等. 基于虚拟同步型风力发电机组的风电场动态聚合模型研究[J]. 电力系统及其自动化学报, 2023, 35(2): 37–44
JI Yirun, HUAI Qing, YUAN Qian, et al. Dynamic aggregation model of wind farm based on VSG wind turbines[J]. Proceedings of the CSU-EPSA, 2023, 35(2): 37–44
[6] 陈婕, 张怡, 房方, 等. 基于仿射扰动反馈的风力发电机组多目标随机模型预测控制[J]. 中国电机工程学报, 2023, 43(2): 496–507
CHEN Jie, ZHANG Yi, FANG Fang, et al. Affine-disturbance-feedback-based multi-objective stochastic model predictive control of wind turbine[J]. Proceedings of the CSEE, 2023, 43(2): 496–507