当目标临近最近通过点(Closest Point of Approach,CPA)时,与水听器之间的距离随时间呈非线性变化,基于干涉条纹斜率的波导不变量测距方法受限。本文提出一种利用简正波水平波数差与波导不变量的关系式实现目标参数估计方法。利用运动目标通过CPA位置时在水平阵两端阵元产生的宽带连续谱干涉条纹,获得其最近通过时间$ {t_{{\text{cpa}}1}} $和$ {t_{{\text{cpa2}}}} $,再利用几何关系和简正波水平波数差与波导不变量的关系式得到阵元1和阵元2的最近通过距离$ {r_{{\text{cpa}}1}} $和$ {r_{{\text{cpa2}}}} $以及目标运动速度$ {v_0} $,最终估计出运动目标相对接收阵几何中心的距离随时间变化曲线。数值仿真表明,本文方法可有效利用临近CPA位置处的时间频率域一定曲率的干涉条纹,实现运动目标参数估计。
When the target approaches the closest point of approach (CPA), the distance between the target and the hydrophone changes nonlinearly with time. In this scenario, waveguide invariant ranging method based on the slope of interference fringes is limited to conduct the measurement. In this thesis, a method of target parameter estimation is proposed by using the relationship between the horizontal wave number difference of normal waves and waveguide invariants. By utilizing the broadband continuous spectrum interference fringes generated by the array elements at both ends of the horizontal array when the moving target passes through CPA position, the sum of the latest position passing time $ {t_{{\text{cpa}}1}} $ and $ {t_{{\text{cpa2}}}} $ are obtained. Afterwards, the latest passing distance $ {r_{{\text{cpa}}1}} $ and $ {r_{{\text{cpa2}}}} $ of the array element 1 and the array element 2, as well as target moving speed $ {v_0} $ are obtained by using the geometric relationship and the relationship between the horizontal wave number difference of normal waves and waveguide invariants. Finally, the curve of the distance of the moving target relative to the geometric center of the receiving array with time is estimated. Numerical simulation reveals that the proposed method is able to effectively use the interference fringes with a certain curvature in time-frequency domain near CPA position to realize the parameter estimation of moving targets.
2023,45(13): 124-129 收稿日期:2023-04-02
DOI:10.3404/j.issn.1672-7649.2023.13.025
分类号:U674
作者简介:张峻峰(1980-),男,高级工程师,研究方向为鱼雷总体
参考文献:
[1] 田坦. 声呐技术( 第2版)[M]. 哈尔滨: 哈尔滨工程大学出版社, 2010.
[2] PETRIDIS V. A method for bearings-only velocity and position estimation[J]. IEEE Transaction on Automatics Control, 1981, 26(2): 488–493
[3] BAGGEROER A B, KUPERMAN W A, MIKHALEVSKY P N. An overview of matched field methods in ocean acoustics[J]. IEEE Journal of Oceanic Engineering, 1993, 18(4): 401–424
[4] YANG T C. An method of range and depth estimation by modal decomposition[J]. The Journal of the Acoustical Society of America, 1987, 82(5): 1736–1745
[5] FERGUSON B G, QUINN B G. Application of the short-time Fourier transform and the Wigner-Ville distribution to the acoustic localization of aircraft[J]. The Journal of the Acoustical Society of America, 1994, 96(2): 821–827
[6] 官善政, 陈韶华, 陈川. 基于粒子群优化算法的目标运动参数估计[J]. 水下无人系统学报, 2018, 26(5): 409–414
GUAN Shan-zheng, CHEN Shao-hua, CHEN Chuan. Target movement parameter estimation based on particle swarm optimization algorithm[J]. Journal of Unmanned Undersea Systems, 2018, 26(5): 409–414
[7] 程帅, 张秦南, 王立文. 一种机动目标运动要素估计算法[J]. 水下无人系统学报, 2020, 28(1): 46–50
CHENG Shuai, ZHANG Qin-nan, WANG Li-wen. An estimation algorithm of maneuvering target movement elements[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 46–50
[8] 孙凯, 高大治, 高德洋, 等. 多普勒频移和干涉谱联合的水声目标运动参数估计[J]. 声学学报, 2023, 48(1): 50–59
SUN Kai, GAO Dazhi, GAO Deyang, et al. Estimation of motion parameters of underwater acoustic targets by combining Doppler shift and interference spectrum[J]. Acta Acustica, 2023, 48(1): 50–59
[9] 张杨, 刘成明, 李萍, 等. 基于水下目标线谱特征的运动参数估计方法[J]. 指挥信息系统与技术, 2022, 13(6): 70–74,94
[10] LEE S W, MAKRIS N C. The array invariant[J]. The Journal of the Acoustical Society of America, 1994, 119(1): 336–351
[11] BONNEJ J, NICOLAS B, MARS J, et al. Estimation of modal group velocities with a single receiver for geoacoustic inversion in shallow water[J]. The Journal of the Acoustical Society of America, 2010, 128(2): 719–727
[12] YANG T C. Source depth estimation based on synthetic aperture beamforming for a moving source[J]. The Journal of the Acoustic Society of America, 2015, 138(3): 1678–1686
[13] RAKOTONARIVO S T, KUPERMAN W A. Model-independent range localization of a moving source in shallow water[J]. The Journal of the Acoustic Society of America, 2012, 132(4): 2218–2223
[14] CHUPROVS D. Interference structure of a sound field in a layered ocean[J]. in Ocean Acoustics Current State, 1982, 71–91.
[15] TAO H L, HICKMAN G, KROLIK J L, Kemp M. Single hydrophone passive localization of transiting acoustic sources[C]// IEEE OCEANS, 2007.
[16] COCKRELLl K L, SCHMIDT H. Robust passive range estimation using the waveguide invariant[J]. The Journal of the Acoustical Society of America, 2010, 127(5): 2780–2789
[17] TURGUT A M. Broadband source localization using horizontal-beam acoustic intensity striations[J]. The Journal of the Acoustical Society of America, 2010, 127(1): 73–83
[18] YU Y, ZHAO A B, YIN J W, et al. Joint waveguide invariant and moving target parameters estimation[M]. Future Control and Automation. 2012: 83–93.
[19] 余赟, 惠俊英, 殷敬伟, 等. 基于波导不变量的目标运动参数估计及被动测距[J]. 声学学报, 2011, 36(3): 258–264
YU Yun, HUI Junying, YIN Jingwei, et al. Moving target parameter estimation and passive ranging based on waveguide invariant theory[J]. Acta Acustica, 2011, 36(3): 258–264
[20] JENSEN F, KUPERMAN W, POTER M, SCHMIDT H. Computational Ocean Acoustics[M]. New York, USA: Springer Science & Business Media, 2011.