为提升故障检测效果,设计基于红外热成像技术的舰船机电一体化设备故障检测方法。在舰船机电一体化设备上作用热源后,利用红外探测器采集设备辐射出的辐射量;红外成像仪依据采集的辐射量,生成设备红外图像;图像处理器利用基于图论的视觉显著性模型,在红外图像内,提取设备目标信息。利用计算机分析提取目标信息内的像素极值规律,划分设备结构区域,并按照结构划分结果与故障检测判据,完成舰船机电一体化设备故障检测与定位。实验证明:该方法可有效获取舰船机电一体化设备红外图像,并有效提取目标信息。该方法可有效划分设备结构区域,完成故障检测。
The application of infrared thermal imaging technology in the fault detection of ship mechatronic equipment is studied to improve the fault detection effect. After the heat source is used on the ship electromechanical integration equipment, infrared detector is used to collect the radiation from the equipment. Infrared imager generates infrared image of equipment according to the amount of radiation collected. The image processor uses the visual saliency model based on graph theory to extract the device target information in the infrared image. The computer is used to analyze and extract the pixel extreme value rule in the target information, divide the equipment structure area, and according to the structure division results and fault detection criteria, complete the fault detection and location of the ship mechatronics equipment. Experimental results show that this method can obtain infrared image of ship mechatronic equipment effectively and extract target information effectively. This method can effectively divide the structure area of equipment and complete the fault detection.
2023,45(13): 178-181 收稿日期:2023-02-15
DOI:10.3404/j.issn.1672-7649.2023.13.037
分类号:TP391
作者简介:鄢圣华(1980-),男,硕士,讲师,研究方向为机电一体化及机械手柔性控制
参考文献:
[1] 卢月, 李维波, 李巍, 等. 舰船电站控制系统的双CPU混成式故障检测技术[J]. 中国舰船研究, 2021, 16(3): 200–206
LU Yue, LI Weibo, LI Wei, et al. Dual CPU redundant communication hybrid fault detection technology for shipborne electrical plant control system[J]. Chinese Journal of Ship Research, 2021, 16(3): 200–206
[2] 尚前明, 姜苗, 陈辉, 等. 基于PSO-ELM算法实现船舶发电机组故障识别[J]. 船舶工程, 2021, 43(1): 87–94
SHANG Qianming, JIANG Miao, CHEN Hui, et al. Fault Identification of Marine Generator Set Based on PSO-ELM Algorithm[J]. Ship Engineering, 2021, 43(1): 87–94
[3] 廖志强, 贾宝柱. 基于全息SDP的船舶推进轴系轴承故障诊断研究[J]. 中国舰船研究, 2022, 17(6): 88–95
LIAO Zhiqiang, JIA Baozhu. Ship propulsion shafting bearing fault diagnosis based on holographic SDP similarity visual recognition[J]. Chinese Journal of Ship Research, 2022, 17(6): 88–95
[4] 黄鹤, 肖飞, 杨国润, 等. 基于开关模态频率特征的船舶储能变流器故障在线检测方法[J]. 电机与控制学报, 2022, 26(2): 24–31
HUANG He, XIAO Fei, YANG Guorun, et al. Open-circuit fault detection for marine energy storage converter using instantaneous frequency characteristics[J]. Electric Machines and Control, 2022, 26(2): 24–31
[5] 徐鹏, 杨海燕, 程宁, 等. 基于优化BP神经网络的船舶动力系统故障诊断[J]. 中国舰船研究, 2021, 16(S1): 106–113
XU Peng, YANG Haiyan, CHENG Ning, et al. Fault diagnosis of ship power system based on optimized BP neural network[J]. Chinese Journal of Ship Research, 2021, 16(S1): 106–113
[6] 曾军, 王东杰, 范伟, 等. 基于红外热成像的电气设备组件识别研究[J]. 红外技术, 2021, 43(7): 679–687
ZENG Jun, WANG Dongjie, FAN Wei, et al. Research on Component Identification for Electrical Equipment Based on Infrared Thermography[J]. Infrared Technology, 2021, 43(7): 679–687