以舰船消防联动控制系统为研究对象,探讨提高系统可靠性的技术手段。采用故障模式影响分析(FMEA)定位消防联动控制系统薄弱环节,并针对薄弱环节采用可靠性、维修性、测试性、安全性、保障性设计方法提高系统整体可靠性,对设计方法中涉及的关键技术进行深入研究。通过分析研究形成提高消防联动控制系统可靠性相关的控制器通用化模块化设计技术、控制线路故障诊断技术、气体释放安全防护技术、消防联动控制辅助决策技术4项关键技术。在满足消防联动控制系统基本控制功能要求的基础上,开展可靠性关键技术研究,达到提升消防联动控制可靠性的目的,起到保障舰船火灾安全性,提高舰船生命力的作用。
Taking the naval ship automatic control system for fire protection as the research object, this paper discusses the technical means to improve the reliability of the system. Fault mode Effect analysis(FMEA)is used to locate the weak links of fire linkage control system. Aiming at the weak links, reliability, maintainability, testability, safety and supportability design methods are adopted to improve the system reliability, and the key technologies involved in the design method are deeply studied. Through the analysis and research, five key technologies are formed to control system, which are redundancy design technology of fire linkage control, universal modular design technology of controller, diagnosis technology of control circuit fault, safety protection technology of gas false release, and intelligent decision-making technology of fire linkage control. On the basis of meeting the basic control function requirements the fire linkage control system, the research on the key technology of reliability is carried out to achieve the purpose of improving the reliability of the fire linkage control system, so as to ensure the fire safety of the naval ship and improve the vitality of the naval ship.
2023,45(14): 45-52 收稿日期:2022-10-21
DOI:10.3404/j.issn.1672-7649.2023.14.008
分类号:U665
作者简介:郑珊珊(1979-),女,高级工程师,主要从事舰船消防、火灾自动报警系统的设计与研究。
参考文献:
[1] 李能鹏, 李明. 舰船装备可靠性系统工程现状及对策[J]. 舰船科学技术, 2011, 33(S1): 3–6
LI N P, LI M. Present situation and countermeasures of reliability system engineering for warnaval ship equipment[J]. NAVAL Ship Science and Technology, 2011, 33(S1): 3–6
[2] GB 16806-2006. 消防联动控制系统[S]. 北京: 中国标准出版社, 2006.
[3] 生建友, 翟助群. 电子设备基于PDCA循环的可靠性设计[J]. 电讯技术, 2014, 54(1): 97–101
SHENG J Y, ZHAI Z Q. Reliability design of electronic equipment based on PDCA cycle[J]. Telecommunication Engineering, 2014, 54(1): 97–101
[4] 李勇, 高晓辉, 潘恩超, 等. 新型防化发烟车RMST一体化设计与关键技术分析[J]. 计算机测量与控制, 2019, 27(3): 126–130
LI Y, GAO X H, PAN E C, et al. Integrated design and key technology analysis of RMST for new chemical smoke proof vehicle[J]. Computer Measurement & Control, 2019, 27(3): 126–130
[5] 秦咏红, 吕乃基. 工程系统可靠性的演进[J]. 东北大学学报(社会科学版), 2011, 13(4): 295–299
QIN Y H, LV N J. The evolution of engineering system reliability[J]. Journal of Northeastern University (Social Science), 2011, 13(4): 295–299
[6] 甘传付, 刘向东. FMECA在雷达装备综合保障中的开展与应用[J]. 现代雷达, 2016, 28(4): 1–3
GAN C F, LIU X D. Development and application of FMECA in radar equipment integrated support[J]. Modem Radar, 2016, 28(4): 1–3
[7] 吴龙标, 袁宏永. 火灾探测与控制工程[M]. 合肥: 中国科学技术大学出版社, 1999: 136–169.
[8] GB 4717-2005. 火灾报警控制器[S]. 北京: 中国标准出版社, 2005.
[9] CB 20016-2018. 舰船火灾报警控制器通用规范[S]. 北京: 中国船舶集团公司综合研究院, 2018.
[10] 甘茂治, 吴真真. 维修性设计与分析[M]. 北京: 国防工业出版社, 1995: 121–138.
[11] 关新, 方博, 徐宇, 等. CAN总线火灾报警控制系统[J]. 控制工程, 2004, 11(S1): 140–142
[12] 沈显照. 利用BIT技术提高雷达可靠性[J]. 四川兵工学报, 2012, 33(4): 85–87
[13] 秘海晓, 张晓杰. 基于可靠性技术的智能温度控制器设计与实现[J]. 测控技术, 2021, 40(1): 144–149
MI H X, ZHANG X J. Design and implementation of intelligent temperature controller based on Reliability Technology[J]. Measurement & Control Technology, 2021, 40(1): 144–149
[14] 郑发泰. 基于单片机的电气控制接线故障诊断系统[J]. 数控技术, 2010(13): 156–158, 164
[15] 张玉杰, 伍莹莹. 一种消防压力气瓶安全监控设备的设计[J]. 仪表技术与传感器, 2014(7): 31–32, 36
ZHANG Y J, WU Y Y. Design of safety monitoring equipment for fire pressure cylinder[J]. Instrument Technique and Sensor, 2014(7): 31–32, 36
[16] 张家骥. 智能报警与联动控制在船舶消防系统中的应用[J]. 四川兵工学报, 2012, 33(7): 124–126, 130
ZHANG J J. Application of intelligent alarm and linkage control in naval ship fire fighting system[J]. Sichuan Ordnance Journal, 2012, 33(7): 124–126, 130
[17] 李良巧, 冯欣. 可靠性系统工程若干基本概念[J]. 四川兵工学报, 2003, 24(3): 6–9
[18] 陆廷孝, 郑鹏洲, 何国伟, 等, 可靠性设计与分析 [M]. 北京: 国防工业出版社, 1995: 159–183.