以实时调整舰船多叶片螺旋桨角度,提升舰船多叶片螺旋桨应用性能为目的,研究射流扰动下舰船多叶片螺旋桨角度的实时调整技术。利用协同射流控制技术,以三维雷诺平均N-S方程作为控制方程,求解状态矢量、对流通矢量、耗散通矢量等;利用上述参量分析协同射流螺旋桨形态受力情况,获取射流扰动产生的作用力;基于该作用力计算喷口动量系数、气泵功率系数等,分析这些参数对协同射流的影响,基于这种影响实现舰船多叶片螺旋桨角度实施调整。实验结果显示该方法所得的数据具有较高的可靠性,利用该方法实时调整射流扰动下舰船多叶片螺旋桨角度,能够显著提升螺旋桨的性能。
With the aim of real-time adjusting the angle of a ship's multi blade propeller and improving its application performance, the real-time adjustment technology of the ship's multi blade propeller angle under jet disturbance is studied. Using collaborative jet control technology, the three-dimensional Reynolds averaged N-S equation is used as the control equation to solve the state vector, flow vector, dissipation flux vector, etc; Using the above parameters to analyze the force acting on the shape of the collaborative jet propeller and obtain the force generated by jet disturbance; Based on this force, the momentum coefficient of the nozzle and the power coefficient of the air pump are calculated, and the influence of these parameters on the collaborative jet is analyzed. Based on this influence, the angle of the ship's multi blade propeller is adjusted. The experimental results show that the data obtained by this method has high reliability. Using this method to adjust the multi blade propeller angle of a ship under jet disturbance in real-time can significantly improve the performance of the propeller.
2023,45(14): 69-72 收稿日期:2023-4-13
DOI:10.3404/j.issn.1672-7649.2023.14.012
分类号:V211
基金项目:广东海洋大学大学生创业创新项目;教育部协同育人项目(202101036002);教育部协同育人项目 (202101142021)
作者简介:边莉(1978-),女,博士,教授,主要从事船舶电子电气专业教学和研究。
参考文献:
[1] 刘哲, 吴帅, 李广. SWATH船螺旋桨脉动压力引起的辐射噪声计算分析[J]. 中国舰船研究, 2020, 15(3): 95–101
LIU Zhe, WU Shuai, LI Guang. Calculation and analysis of radiated noise caused by propeller-induced pressure fluctuations for SWATH ship[J]. Chinese Journal of Ship Research, 2020, 15(3): 95–101
[2] 蒋圣鹏, 黄子祥, 巫頔, 等. 螺旋桨激励下船艉结构振动控制试验研究[J]. 中国舰船研究, 2021, 16(3): 157–163
JIANG Shengpeng, HUANG Zixiang, Wu Di, et al. Experimental investigation into vibration control of stern structure excited by propeller forces[J]. Chinese Journal of Ship Research, 2021, 16(3): 157–163
[3] 陈雷雷, 冉胡泽, 胡庆松, 等. 虾蟹塘投饵船三叶螺旋桨设计及水动力仿真分析[J]. 上海海洋大学学报, 2021, 30(5): 893–904
CHEN Leilei, RAN Huze, HU Qingsong, et al. Hydrodynamic simulation analysis of three-blade propeller of shrimp and crab pond feeding boat[J]. Journal of Shanghai Ocean University, 2021, 30(5): 893–904
[4] 马艳, 辛公正, 武珅. 万箱集装箱船螺旋桨轻量化设计[J]. 中国造船, 2020, 61(2): 186–195
MA Yan, XIN Gongzheng, WU Shen. Lightweight design of propeller for container vessel with 10 000 TEU[J]. Shipbuilding of China, 2020, 61(2): 186–195
[5] 张炜, 刘文津, 张玉明, 等. 高温加压微型流化床内脉冲气射流扰动的数值模拟[J]. 过程工程学报, 2022, 22(7): 944–953
ZHANG Wei, LIU Wenjin, ZHANG Yuming, et al. Numerical simulation of pulsed feeding flow disturbance in high temperature pressurized micro-fluidized bed[J]. The Chinese Journal of Process Engineering, 2022, 22(7): 944–953
[6] 何芳, 王向军. 电化学极化状态对潜艇螺旋桨扰动电场模型的影响[J]. 国防科技大学学报, 2023, 45(1): 136–143
HE Fang, WANG Xiangjun. Influence of electrochemistry polarization state on electric field model of submarine propeller disturbance[J]. Journal of National University of Defense Technology, 2023, 45(1): 136–143
[7] 杨增强, 王琛艳, 朱栋, 等. 高压水射流钻割一体化防冲机理分析及其数值模拟研究[J]. 矿业安全与环保, 2021, 48(1): 17–22
YANG Zengqiang, WANG Chenyan, ZHU Dong, et al. Analysis and numerical simulation of high pressure water jet drilling-cutting integration for rock burst prevention mechanism[J]. Mining Safety & Environmental Protection, 2021, 48(1): 17–22
[8] 刘延保, 巴全斌, 申凯, 等. 瓦斯抽采钻孔水射流协同修护技术研究与应用[J]. 矿业安全与环保, 2020, 47(2): 56–60
LIU Yanbao, BA Quanbin, SHEN Kai, et al. Research and application of water jet and cooperative repair technology in gas drainage[J]. Mining Safety & Environmental Protection, 2020, 47(2): 56–60