船舶微电网在并联运行时,由于存在线路阻抗差异问题,导致功率分配不合理,传统的虚拟同步发电机控制很难实现功率的精准分配。为了解决上述问题,本文在建立风光储微电网模型基础上,研究VSG(Virtual Synchronous Generator)多机并联系统关键参数的匹配算法;采用自适应控制理论,提出虚拟阻抗自适应控制策略,逆变器根据给定功率调整虚拟阻抗值,在存在线路阻抗差异的情况下,使VSG多机并联系统能够精确地分配负荷功率。仿真结果验证了所提控制策略和参数设计方法的有效性和可行性。
When the off-grid ship microgrid operated in parallel, the traditional virtual synchronous machine control due to the problem of line impedance difference, resulting in unreasonable power distribution, it is difficult to achieve accurate power distribution. In order to solve the above problems, this paper establishes a model of wind and solar storage microgrid, studies the matching method of key parameters of VSG multi-machine parallel system, and adopts the algorithm of virtual impedance adaptation. By using a virtual impedance adaptive algorithm, the inverter can adjust the virtual impedance value according to a given power,enables VSG (Virtual Synchronous Generator) multi-machine parallel systems to accurately distribute load power in the presence of line impedance differences.The simulation results verify the effectiveness and feasibility of the proposed control strategy and parameter design method.
2023,45(14): 108-113 收稿日期:2022-5-20
DOI:10.3404/j.issn.1672-7649.2023.14.020
分类号:TM464
基金项目:天津市自然科学基金重点项目(08JCZDJC18600);天津市教委重点基金项目(2006ZD32)
作者简介:王红君(1963-),女,硕士,教授,研究方向为复杂系统智能控制理论及应用、电力系统及其自动化等。
参考文献:
[1] 姚建华, 胡晟, 王冠, 等. 基于强化学习的孤岛微电网多源协调频率控制方法[J]. 电力建设, 2020, 41(9): 69–75
YAO J H, HU Sheng, WANG Guan, et al. M ulti-source coordinated frequency control method based on reinforcement learning for island microgrid[J]. Electric Power Construction, 2020, 41(9): 69–75
[2] WANG Z, CHEN B, WANGnJ, et al. Decentralized energy management system for networked microgrids in grid-connected and islanded modes[J]. IEEE Transactions on Smart Grid, 2016, 7(2): 1097–1105
[3] GUO W M, MU L H. Control principles of micro-source inverters used in microgrid[J]. Protection and Control of Modern Power Systems, 2016, 1(1): 56–62
[4] 张国荣, 丁晓通, 彭勃, 等. 交直流混合微电网互联变流器改进控制策略[J]. 电力系统保护与控制, 2020, 48(14): 50–58
ZHANG G R, DING X T, PENG Bo, et al. Improved control strategy for an AC/DC hybrid microgrid interlinking converter[J]. Power System Protection and Control, 2020, 48(14): 50–58
[5] 杨新法, 苏剑, 吕志鹏, 等. 微电网技术综述[J]. 中国电机工程学报, 2014, 34(1): 57–70
YANG X F, SU Jian, LU Z P, et al. Overview on micro-grid technology[J]. Proceedings of the CSEE, 2014, 34(1): 57–70
[6] 马燕, 徐立军. 离网型风光互补系统控制策略探讨[J]. 热能动力工程, 2016, 31(1): 1–12.
MA YAN, XU L J, Exploratory investigation of the tacticsfor controlling an off-grid type wind-power photovoltaic complementary system[J]. Journal of Engineering for Ther-mal Energy and Power, 2016, 31(1): 1–12.
[7] 刘舒, 李正力, 王翼, 等. 含分布式发电的微电网中储能装置容量优化配置[J]. 电力系统保护与控制, 2016, 44(3): 78–84.
LIU Shu, LI Z L, WANG Yi, et al. Optimal capacity allocation of energy storage in micro-grid with distributed generation[J]. Power System Protection and Control, 2016, 44(3): 78–84.
[8] 张海燕, 秦亚斌, 肖春, 等. 独立风光储微电网中混合储能的管理控制策略[J]. 电气应用, 2017, 36(1): 18–25.
ZHANG H Y, QIN Y B, XIAO Chun, et al. Manage-ment and control strategy of hybrid energy storage in the independent wind/PV/storage microgrid[J]. Electrotechnical Application, 2017, 36(1): 18–25.
[9] 解东, 杨欢红, 丁宇涛, 等. 基于逆变器直流侧电流控制的微网无幅差控制[J]. 电力科学与技术学报, 2020, 35(4): 107–113
XIE Dong, YANG H H, DING Y T, et al. Non-amplitude difference control of microgrid based on DC-side current control of inverter[J]. Journal of Electric Power Science and Technology, 2020, 35(4): 107–113
[10] 奚鑫泽, 徐志, 洪灏灏, 等. 不平衡电压下 VSG无锁相环并网及运行控制策略[J]. 电力工程技术, 2019, 38(3): 80–86
XI X Z, XU Zhi, HONG H H, et al. Control strategies of grid-connection and operation based on virtual synchronous generator without phase-lock loop under unbalanced grids[J]. Electric Power Engineering Technology, 2019, 38(3): 80–86
[11] 吕志鹏, 盛万兴, 钟庆昌, 等. 虚拟同步发电机及其在微电网中的应用[J]. 中国电机工程学报, 2014, 34(16): 2591–2603
LV Z P, SHENG W X, ZHONG Q C, et al. Virtual synchronous generator and its applications in micro-grid[J]. Proceedings of the CSEE, 2014, 34(16): 2591–2603
[12] 杜燕, 赵韩广, 张显创, 等. 一种无锁相环动态阻尼的虚拟同步发电机[J]. 电工电能新技术, 2019, 38 (7): 10-19.
DU YAN, ZHAO H G, ZHANG X C, et al. Virtual synchronous generator adopting dynamic damping without frequency detection. [J]. Advanced Technology of Elec-trical Engineering and Energy. 2019, 38(7): 10-19.
[13] 樊晨曦, 李海锋, AZEDDINE H, 等. 三相逆变器并联系统中环流抑制的研究[J]. 智慧电力, 2018, 46(5): 15–21
FAN C X, LI H F, AZEDDINE H, et al. Study on circulating current suppression in three-phase inverter parallel system[J]. Smart Power, 2018, 46(5): 15–21
[14] 张宇华, 赵晓轲, 方艺翔. 独立微网中虚拟同步发电机的频率自恢复控制策略[J]. 电网技术, 2019(6): 2145–2131
ZHANG Y H, ZHAO X K, FANG Y X. Frequency self-recovery control strategy of virtual synchronous generator in independent microgrid[J]. Power Grid Technology, 2019(6): 2145–2131
[15] 邓皓, 崔双喜, 孙彦萍, 等. 孤岛微网中风光储混合建模及仿真研究[J]. 高压电器2019, 55(10): 141-147.
DENG HAO, CUI S X, SUN Y P, et al. Modeling and simulation of wind and water storage mixture in microgrid [J]. High voltage appliance, 2019, 55(10): 141-147.
[16] 袁健, 杨伟. 独立微网中多虚拟同步机功率精确分配控制策略[J]. 电力系统保护与控 制2019, 47(4): 35-42.
YUAN Jian, YANG Wei. Accurate power sharing control strategy of multiple virtual synchronous generators in independent micro-grid[J]. Power System Protection and Control, 2019, 47(4): 35-42.
[17] 张波, 颜湘武, 黄毅斌, 等. 虚拟同步机多机并联稳定控制及其惯量匹配方法[J]. 电工技术学报, 2017, 32(10): 42–52
ZHANG Bo, YAN X W, HUANG Y B, et al. Multi-machine parallel stability control and inertia matching method of virtual synchronizer[J]. Transactions of China Electrotechnical Society, 2017, 32(10): 42–52
[18] 温春雪, 黄耀智, 胡长斌, 等. 虚拟同步发电机接口变换器并联运行虚拟阻抗自适应控制[J]. 电工技术学报, 2020, 35(S2): 494–502
WEN C X, HUANG Y Z, HU C B, et al. Virtual impedance adaptive control for parallel operation of virtual synchronous generator interface converter[J]. Journal of Electrotechnics, 2020, 35(S2): 494–502