船用电机在运行过程中,转子不平衡力会引起电机产生振动并向船体传递,降低舰船隐蔽性。目前船用电机主要采用传统机械轴承(如滑动轴承),导致电机振动缺乏有效控制手段。为有效抑制电机振动传递,引入复合轴承这一新型概念,在滑动轴承两侧并联电磁轴承,从而使电机具备主动控制条件。在减振控制策略上,类比主动噪声控制,基于FxLMS算法以降低电机机脚振动加速度为控制目标,对电机振动进行主动控制。建立四自由度电磁-滑动复合轴承-刚性转子系统动力耦合模型并进行仿真。结果表明,应用FxLMS控制算法控制电磁轴承可有效降低电机机脚振动,从而实现电机减振降噪,有利于提高舰船隐蔽性。
During the operation of the marine motor, the unbalanced force of the rotor will cause the motor to vibrate and transmit to the hull, reducing the concealment of the ship. At present, marine motor mainly adopts traditional mechanical bearings (such as sliding bearings), which leads to the lack of effective control methods for motor vibration. In order to effectively suppress the vibration transmission of the motor, the new concept of composite bearing is introduced, and the active magnetic bearing is paralleled on both sides of the sliding bearing, so that the motor has active control conditions. In terms of vibration reduction control strategy, compared with active noise control, motor vibration is actively controlled based on FxLMS algorithm with reducing the vibration acceleration of motor foot as the control objective. The dynamic coupling model of four degrees of freedom electromagnetic-sliding composite bearing-rigid rotor system is established and simulated. The simulation results show that the application of FxLMS control algorithm to control the active magnetic bearing can effectively reduce the vibration of the motor foot, so as to realize the vibration and noise reduction of the motor and improve the concealment of the ship.
2023,45(14): 114-119 收稿日期:2022-5-26
DOI:10.3404/j.issn.1672-7649.2023.14.021
分类号:U661;O328
作者简介:李宜翱(1997-),男,硕士研究生,研究方向为电磁轴承减振技术。
参考文献:
[1] 王东, 姜豪, 苏振中, 等. 船用磁悬浮轴承关键技术与发展综述[J]. 中国电机工程学报, 2020, 40(20): 6704–6715
[2] 钟一谔, 何衍宗, 王正, 等, 转子动力学[M]. 北京: 清华大学出版社, 1987.
[3] 任明可, 谢溪凌, 黄志伟, 等. 新型橡胶-电磁复合主被动隔振器研究[J]. 振动与冲击, 2021, 40(23): 32–37
REN Mingke, XIE Xiling, HUANG Zhiwei, et al. Research on a new rubber electromagnetic composite active and passive vibration isolator[J]. Vibration and Shock, 2021, 40(23): 32–37
[4] LI Y, HE L, SHVAI C G, et al. Improved hybrid isolator with maglev actuator integrated in air spring for active-passive isolation of ship machinery vibration[J]. Journal of Sound and Vibration, 2017, 407.
[5] GERHARD S, ERICH M. Magnetic bearing: theory, design, and application to rotating machinery [M]. Berlin Heidelberg: Springer-Verlag, 2009.
[6] 张维煜, 朱熀秋, 袁野. 磁悬浮轴承应用发展及关键技术综述[J]. 电工技术学报, 2015, 30(12): 12–20
[7] 吴华春, 涂星, 周建, 等. 磁悬浮转子不平衡振动控制研究综述[J]. 轴承, 2022(3): 1–9
[8] 高辉, 徐龙祥. 基于LMS算法的磁悬浮轴承系统振动补偿[J]. 振动工程学报, 2009, 22(6): 583–588
[9] 李田. 磁悬浮轴承的容错控制系统研究[D]. 武汉:华中科技大学, 2019.
[10] 李慧敏, 曾胜, 汪希萱. 电磁辅助支承的被动式减振研究[J]. 中国机械工程, 2003(24): 24–26+4-5
[11] DIMITRI A S, El SHAFEI A, ADLY A A, MAHFOUD J. Magnetic actuator control of oil whip instability in bearings[J]. IEEE Transactions on Magnetics, 2015, 51(11).
[12] 沈庆崇, 马金奎, 常记莽, 等. 滑动轴承转子运动轨迹主动控制[J]. 润滑与密封, 2010, 35(12): 69–73+82.
[13] S HEINDEL, F BECKER, S RINDERKNECHT. Unbalance and resonance elimination with active bearings on a Jeffcott Rotor[J]. Mechanical System and Signal Processing, 2016, 85: 339–353.
[14] LEWIS D W, ALLAIRE P E, THOMAS P W. Active magnetic control of oscillatory axial shaft vibrations in ship shaft transmission systems part 1: system natural frequencies and laboratory scale model[J]. A S L E Transactions, 1989, 32(2): 170–178
[15] HAO Z A, DLWA B. Deep ANC: A deep learning approach to active noise control[J]. Neural Networks, 2021, 141: 1–10.
[16] 刘昊, 杨智春, 牛文超, 等. 基于NAF-FxLMS控制器的垂尾抖振主动控制[J]. 振动与冲击, 2021, 40(6): 140–146
LIU Hao, YANG Zhichun, NIU Wenchao, et al. Active control of vertical tail buffeting based on NaF FXLMS controller[J]. Vibration and Shock, 2021, 40(6): 140–146