船舶耐腐蚀材料长期受海水侵蚀会出现不同程度的腐蚀现象,为更好地维护船舶组件,研究基于红外图像的耐腐蚀船舶材料表面缺陷识别方法。该方法通过设计超声红外图像检测装置,利用该装置采集耐腐蚀船舶材料表面红外图像后,分别使用双边滤波器和自适应边缘补偿方法对耐腐蚀船舶材料表面红外图像进行去噪和边缘增强处理,并以处理后的耐腐蚀船舶材料表面红外图像为基础,使用小波变换方法得到耐腐蚀船舶材料表面缺陷边缘集合点和缺陷位置,实现耐腐蚀船舶材料表面缺陷识别。研究结果表明,该方法具备较强的耐腐蚀船舶材料表面红外图像降噪和边缘增强能力,并可有效识别大小不同的耐腐蚀船舶材料表面缺陷,应用效果较佳。
Ship corrosion-resistant materials may exhibit varying degrees of corrosion due to long-term seawater erosion. In order to better maintain ship components, a method for identifying surface defects of corrosion-resistant ship materials based on infrared images is studied. In this method, an ultrasonic infrared image detection device is designed. After the device collects the infrared image of the surface of corrosion resistant ship materials, Bilateral filter and adaptive edge compensation methods are used to denoise and enhance the edge of the infrared image of the surface of corrosion resistant ship materials, and based on the processed infrared image of the surface of corrosion resistant ship materials, Using wavelet transform method to obtain the edge collection points and defect positions of corrosion resistant ship material surface defects, achieving the recognition of corrosion resistant ship material surface defects. The research results indicate that this method has strong infrared image denoising and edge enhancement capabilities on the surface of corrosion-resistant ship materials, and can effectively identify surface defects of corrosion-resistant ship materials of different sizes, with better application effects.
2023,45(14): 152-155 收稿日期:2023-4-7
DOI:10.3404/j.issn.1672-7649.2023.14.029
分类号:TP391
基金项目:河南省高等学校重点科研项目计划(教科技〔2021〕383号)(22B520018);河南理工大学鹤壁工程技术学院校重点课题(2022-KJZD-006)
作者简介:杜玉红(1979-),女,副教授,研究方向为人工智能、网络技术及图像处理等。
参考文献:
[1] 陈曦, 殷晨波, 许明阳, 等. 基于红外热成像的金属材料气孔缺陷识别研究[J]. 热加工工艺, 2020, 49(12): 66–70
[2] 陈智, 李超, 王羽泽, 等. 船用薄板激光-电弧复合焊表面气孔缺陷试验分析[J]. 船海工程, 2021, 50(2): 87-90.
[3] 刘佳琪, 张志杰, 林振钰, 等. 基于激光热成像的金属表面缺陷深度检测[J]. 激光与光电子学进展, 2021, 58(4): 299-306.
[4] 王禄祥, 张志杰, 汪权, 等. 基于直觉模糊C均值聚类的红外图像缺陷检测[J]. 红外技术, 2022, 44(11): 1220-1227.
[5] 张人杰, 陈卫彬, 孙宏伟, 等. 基于AP聚类和深度卷积网络的船舶焊缝缺陷检测[J]. 船舶工程, 2021, 43(8): 131-137.
[6] 吕宏宇, 卜赫男, 袁昕, 等. 基于改进关联规则算法的船舶涂装缺陷知识获取[J]. 船舶工程, 2022, 44(12): 30-35.