为了提升舰船尾迹光学信号异常特征识别效果,提出舰船尾迹光学信号异常特征贝叶斯识别方法。针对合成孔径雷达系统采集的舰船尾迹SAR图像中舰船尾迹与海杂波边界区分不清晰的情况,使用图像分割和归一化的Hough变换检测方法实现舰船尾迹图像增强;依据气泡运输方程提取舰船尾迹直方图,根据直方图内峰值点密集程度,提取舰船尾迹光学信号特征,将该特征作为输入,使用贝叶斯分类模型输出舰船尾迹光学信号异常特征识别结果。实验结果表明:该方法可有效增强舰船尾迹SAR图像,也可有效提取舰船尾迹直方图,并准确提取舰船尾迹光学信号特征和识别其中的异常特征。
In order to improve the recognition effect of abnormal features in ship wake optical signals, a Bayesian recognition method for abnormal features in ship wake optical signals is proposed. In response to the unclear distinction between ship wakes and sea clutter boundaries in SAR images of ship wakes collected by synthetic aperture radar systems, image segmentation and normalized Hough transform detection methods are used to enhance the ship wakes image; After extracting the ship wake histogram based on the bubble transport equation, the optical signal features of the ship wake are extracted based on the density of peak points in the histogram; Using this feature as input, use a Bayesian classification model to output the abnormal feature recognition results of the ship wake optical signal. The experimental results show that this method can effectively enhance SAR images of ship wakes, extract ship wakes histograms, and accurately extract optical signal features of ship wakes and identify abnormal features within them.
2023,45(14): 176-179 收稿日期:2023-6-2
DOI:10.3404/j.issn.1672-7649.2023.14.035
分类号:TP391
作者简介:岳莉(1976-),女,硕士,副教授,研究方向为计算机软件与理论。
参考文献:
[1] 李岩, 吴雨薇, 何红艳. 基于“高分五号”卫星红外影像的舰船尾迹特征分析[J]. 航天返回与遥感, 2020, 41(5): 102–109
LI Yan, WU Yuwei, HE Hongyan. The ship wake characterization study based on gf-5 infrared images[J]. Spacecraft Recovery & Remote Sensing, 2020, 41(5): 102–109
[2] 于祥, 胡开业. 分层流中潜艇加减速对尾迹特征特性的影响[J]. 中国舰船研究, 2022, 17(3): 67–77,101
YU Xiang, HU kaiye. Influence of submarine's acceleration and deceleration on wake spectrum characteristics in stratified flow[J]. Chinese Journal of Ship Research, 2022, 17(3): 67–77,101
[3] 黄子亮, 张昊春, 王琦. 舰船尾迹和海面红外仿真成像[J]. 应用光学, 2023, 44(2): 286–294
HUANG Ziliang, ZHANG Haochun, WANG Qi. Infrared simulation imaging of ship wakes and sea surface[J]. Journal of Applied Optics, 2023, 44(2): 286–294
[4] 赵婷, 王申涛, 牛林, 等. 合成孔径雷达图像舰船尾迹检测算法[J]. 上海交通大学学报, 2020, 54(12): 1259–1268
ZHAO Ting, WANG Shentao, NIU Lin, et al. Detection algorithm of ship wake in sar images[J]. Journal of Shanghai Jiaotong University, 2020, 54(12): 1259–1268
[5] 姚维佳, 钱勇, 臧奕茗, 等. 不同结构及规格参数对GIL局放光学信号传播特性的影响研究[J]. 高压电器, 2021, 57(6): 32–40
YAO Weijia, QIAN Yong, ZANG Yiming, et al. Influence of different structure and specification paramete on the propagation characteristics of optical signals generated by gil partial discharge[J]. High Voltage Apparatus, 2021, 57(6): 32–40
[6] 康耀龙, 冯丽露, 张景安. 基于朴素贝叶斯的分区域异常数据挖掘研究[J]. 计算机仿真, 2020, 37(10): 303–306,316
KANG Yao-long, FENG Li-lu, ZHANG Jing-an. Research on subregional anomaly data mining based on naive bayes[J]. Computer Simulation, 2020, 37(10): 303–306,316
[7] 李保珍, 张诗莹, 郭红建. 基于贝叶斯理论的异常点阈值自动识别[J]. 统计与决策, 2021, 37(19): 5–10
LI Baozhen, ZHANG Shiying, GUO Hongjian. Automatic threshold identification of outliers based on bayesian theory[J]. Statistics and Decision, 2021, 37(19): 5–10
[8] 安葳鹏, 程小博, 刘雨. Fleiss'Kappa系数在贝叶斯决策树算法中的应用[J]. 计算机工程与应用, 2020, 56(7): 137–140
AN Weipeng, CHENG Xiaobo, LIU Yu. Application of Fleiss'Kappa coefficient in bayesian decision tree algorithm[J]. Computer Engineering and Applications, 2020, 56(7): 137–140