以极地小型邮轮加筋板结构为研究对象,设计并制作典型加筋板缩比模型,开展完整结构和损伤结构的轴向压缩极限强度试验研究,揭示完整结构和损伤结构下,主甲板板架结构的极限承载能力和屈曲失效模式,并基于全船结构强度有限元方法,计算主甲板板架完整结构和损伤结构的应力,进行了主甲板板架结构冗余度评估。研究发现:轴向压缩载荷作用下,单独一根加强筋出现局部损伤会小幅度降低加筋板结构的极限承载能力;加筋板完整结构和损伤结构屈曲破坏模式均为加强筋率先破坏引起整个板架结构屈曲破坏;单独一根加强筋的损伤不会引起极地小型邮轮加筋板结构的连续性垮塌,具有良好的结构冗余。研究结果对极地小型邮轮结构设计和冗余度研究具有一定参考价值。
Taking the stiffened panels structure of polar small cruise ship as the research object, a scale model of typical stiffened panels was designed and produced, and the axial compressive ultimate strength test of the intact structure and the damaged structure was carried out, and the ultimate bearing capacity and buckling failure mode of the main deck panels structure under the intact structure and the damaged structure were revealed, and based on the finite element method of the whole ship's structural strength, the stress of the intact structure and the damaged structure of the main deck panels is calculated, and the structural redundancy evaluation of the main deck panels is carried out. The study found: under the action of axial compressive load, the local damage of a single stiffener will slightly reduce the ultimate bearing capacity of the stiffened panels structure, the buckling failure modes of the intact structure and the damaged structure of the stiffened panels are both the first failure of the stiffener and the buckling failure of the entire stiffened panels structure; the damage of a single stiffener will not cause the continuous collapse of the stiffened plate structure of the polar small cruise ship, and it has good structural redundancy. The research results have certain reference value for the structural design and redundancy research of polar small cruise ships.
2023,45(15): 1-5 收稿日期:2022-04-01
DOI:10.3404/j.issn.1672-7649.2023.15.001
分类号:U661.43
基金项目:江苏省科技成果转化项目(BA2020062;BA2021064)
作者简介:谷家扬(1979-),男,博士,教授,研究方向为船舶与海洋工程总体设计
参考文献:
[1] IMO. MSC. 287(87) 通过国际散货船和油船目标型构造标准[S]. 2010.
[2] 卢娇. 单舷侧散货船舷侧板架的极限承载能力及冗余度研究[D]. 杭州: 浙江工业大学, 2015.
[3] 罗海东, 洪英, 吴剑国, 等. 散货船和油船的结构冗余度及其验证[J]. 中国造船, 2016, 57(2): 129–136
[4] 陈鹏, 万正权, 刘俊杰, 等. 单舷侧散货船舷侧局部结构冗余度研究[J]. 舰船科学技术, 2015, 37(8): 18–22
[5] DALEY C, HERMANSKI G, PAVIC M, et al. Ultimate strength of frames and grillages subject to lateral loads-an experimental study[C]// Proceedings of 10th International Symposium on Practical Design of Ships and Other Floating Structures, 2007.
[6] PEI Z, FENG X, ZHU L. Collapse test of SWATH under transverse load[C]// Proceedings of the International Offshore and Polar Engineering Conference, 2017: 995–1000.
[7] MING C X, GUEDES S C. Experimental study on the collapse strength of wide stiffened panels[J]. Marine Structures, 2013.
[8] MING C X, GUEDES S C. Experimental study on the collapse strength of narrow stiffened panels[J]. Journal of Offshore Mechanics and Arctic Engineering, 2013.
[9] MING C X, GUEDES S, C. Comparisons of calculations with experiments on the ultimate strength of wide stiffened panels[J]. Marine Structures, 2013.
[10] 袁天. 轴向受压加筋板极限强度非线性相似准则与试验研究[D]. 武汉: 武汉理工大学, 2019.
[11] 熊群飞. 联合载荷作用下加筋板极限强度数值与试验研究[D]. 上海:上海交通大学, 2020.
[12] RINGSBERG J W, DARIE I, NAHSHON K, et al. The ISSC 2022 committee III. 1-Ultimate strength benchmark study on the ultimate limit state analysis of a stiffened panels structure subjected to uniaxial compressive loads[J]. Marine Structures, 2021, 79:
[13] GUO Zhenfei, BAI Ruixiang, LEI Zhenkun, et al. Experimental and numerical investigation on ultimate strength of laser-welded stiffened panels considering welding deformation and residual stresses[J]. Ocean Engineering, 2021, 234: 109239.1−109239.13.
[14] POKNAM H, KWANGCHOL R, CHOLIL Y, et al. A study on the residual ultimate strength of continuous stiffened panels with a crack under the combined lateral pressure and in-panel compression[J]. Ocean Engineering, 2021, 234: 109265.1−109265.14.