参数辨识对于构建船舶操纵运动数学模型具有重要意义。为有效、准确估计实船操纵运动模型参数,提出一种基于系统辨识原理、采用递推最小二乘算法进行差分方程型船舶运动模型参数辨识的技术路线。基于操纵试验数据,将技术路线应用于实船舵角-航向差分方程模型的参数辨识。应用研究显示,提出的技术路线在实船操纵运动模型参数辨识的应用中可行性好,辨识出的参数具有较高的精度,模型输出能够较好拟合观测输出。本文中提出的技术路线流程简单,便于工程实现,能够为船舶运动模型参数的自动辨识提供支持。
Parameter identification is of great significance for constructing up a mathematical model of ship maneuvering motion. In order to effectively and accurately estimate the parameters of a ship maneuvering motion model, a technical route for parameter identification of difference equation ship motion model based on system identification principle and recursive least square (RLS) algorithm is proposed. Based on the manipulation experimental data, the technical route is applied to the parameter identification of the rudder angle - heading difference equation model of a real ship. The application results show that the proposed method is feasible in the practical parameter identification of ship maneuvering motion model, the identified parameters have high accuracy and the model output can better fit the observation output. The technical route proposed in this paper is simple and easy to implement in engineering, which can provide available support for automatic parameter identification of ship motion models.
2023,45(15): 11-15 收稿日期:2022-08-31
DOI:10.3404/j.issn.1672-7649.2023.15.003
分类号:U675.79
基金项目:舟山市科技局浙江海洋大学专项资金项目(2020C21024);浙江省教育厅科研项目(Y202147772)
作者简介:田延飞(1983-),男,博士,研究方向为智能航海及其仿真技术等
参考文献:
[1] 张秀凤, 王晓雪, 孟耀等. 船舶运动建模与仿真研究进展及未来发展趋势[J]. 大连海事大学学报, 2021, 47: 1–8
ZAHNG Xiu-feng, WANG Xiao-xue, MENG Yao, et al. Research progress and future development trend of ship motion modeling and simulation[J]. Journal of Dalian Maritime University, 2021, 47: 1–8
[2] 赵大明, 施朝健, 彭静. 应用扩展卡尔曼滤波算法的船舶运动模型参数辨识[J]. 上海海事大学学报, 2008(3): 5–9
ZHAO Da-ming, SHI Zhao-jian, PENG Jing. Parameter identification to motion model of ship by extended Kalman filter[J]. Journal of Shanghai Maritime University, 2008(3): 5–9
[3] 王雪刚, 邹早建, 任如意, 等. 基于支持向量机的四自由度船舶操纵运动黑箱建模[J]. 中国造船, 2014, 55(3): 147–155
WANG Xue-gang, ZOU Zao-jian, REN Ru-yi, et al. Black-Box modeling of ship maneuvering motion in 4 degrees of freedom based on support vector machines[J]. Shipbuilding of China, 2014, 55(3): 147–155
[4] 王雪刚, 邹早建, 刘程. 基于支持向量机的四自由度船舶操纵运动盲预报[J]. 船舶力学, 2014: 1013-1023.
WANG Xue-gang, ZOU Zao-jian, LIU Cheng. Blind prediction of ship manoeuvring motion in 4 degrees of freedom based on support vector machines[J]. Journal of Ship Mechanics, 2014: 1013-1023.
[5] 孙健, 陈永冰, 周岗, 等. 高速舰船的运动模型适用性分析及海浪中的操纵仿真试验[J]. 舰船科学技术, 2018, 40(1): 41–45+51
SUN Jian, CHEN Yong-bing, ZHOU Gang, et al. The applicability analysis of the model of high-speed ship and the simulated maneuvering test in waves[J]. Ship Science and Technology, 2018, 40(1): 41–45+51
[6] 杨诚. 模型参数辨识在运动控制仿真系统的应用[J]. 舰船科学技术, 2020, 42(3A): 31–33
YANG Cheng. Application of model parameter identification in motion control simulation system[J]. Ship Science and Technology, 2020, 42(3A): 31–33
[7] 曹包华. 基于模型参数辨识的船舶运动控制仿真系统研究[D]. 吉林: 吉林大学, 2012.
CAO Bao-hua. Research on the ship motion control simulation system base on parameter identification[D]. Jilin: Jilin University, 2012.
[8] 毕革新. 递归神经网络的动态系统辨识及其在船舶运动控制中的应用研究[D]. 大连: 大连海事大学, 2009.
[9] 李光磊, 臧涛, 范邹, 等. 参数辨识在船舶运动控制中的研究与应用[J]. 船电技术, 2011, 31(4): 46–50,54
LI Guang-lei, ZANG Tao, FAN Zou, et al. Application of parameter identification to ship motion control[J]. Marine Electric & Electronic Engineering, 2011, 31(4): 46–50,54
[10] 丁彦侃, 俞孟蕻. 并行扩展卡尔曼滤波的船舶模型参数辨识研究[J]. 船舶工程, 2015, 37(1): 72–74
DING Yan-kan, YU Meng-hong. Parallel EKF identification methods for mathematics model of ship[J]. Ship Engineering, 2015, 37(1): 72–74
[11] 田延飞, 黄立文, 熊勇, 等. 利用新型蝙蝠算法辨识船舶运动模型参数[J]. 科学技术与工程, 2018, 18(8): 136–143
TIAN Yan-fei, HUANG Li-wen, XIONG Yong, et al. Parameter identification of ship motion model by using novel bat algorithm[J]. Science Technology and Engineering, 2018, 18(8): 136–143
[12] TIAN Y. , HUANG L., XIONG Y., et al. Parameter identification of an ARX type ship motion model using system identification techniques[J]. International Journal of Smart Engineering, 2017, 1(4): 417–437
[13] 刘亢, 刘忠途, 李乐荣, 等. 永磁同步电机在线多参数辨识方法研究[J]. 微特电机, 2012: 4-7.
LIU Kang, LIU Zhong-tu, LI Le-rong, ea al. Online multi-parameter identification method for permanent magnet synchronous motor[J]. Small & Special Electrical Machines, 2012: 4-7.
[14] YIN JC, ZOU Z J, XU F. Parametric identification of abkowitz model for ship manoeuvring motion by using partial least squares regression[J]. Journal of Offshore Mechanics and Arctic Engineering, 2015, 137: 1–8
[15] 秦余钢, 马勇, 张亮等. 基于改进最小二乘算法的船舶操纵性参数辨识[J]. 吉林大学学报(工学版), 2016, 46(3): 897–903
QIN Yu-gang, MA Yong, ZHANG Ling, et al. Parameter identification of ship’s maneuevering motion based on improved least square method[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(3): 897–903
[16] 张虎, 李正熙, 童朝南. 基于递推最小二乘算法的感应电动机参数离线辨识[J]. 中国电机工程学报, 2011, 31: 79–86
ZHANG Hu, LI Zheng-xi, TONG Zhao-nan. Off-line parameter identification of induction motor based on recursive least-squares algorithm[J]. Proceedings of the CSEE, 2011, 31: 79–86