基于流体计算软件STAR-CCM+中重叠网格和DFBI技术,在Re=150,UR=5条件下对单圆柱及串列不等直径圆柱涡激振动进行数值模拟。模拟中分别在较大范围内改变质量比(1~300)和阻尼比(0~1),获得了各工况下圆柱振动响应及受力与质量比和阻尼比的关系,分析了质量比和阻尼比对圆柱振动的影响及联系。结果表明:从整体来看,圆柱振动幅值和阻力随质量比和阻尼比的增加而降低,升力呈先升后降趋势。在小质量比下(m*<20),圆柱振幅和受力受质量比和阻尼比影响较大,并随两参数的变化而快速变化;在较大质量比下,圆柱振幅和受力趋于稳定,几乎不再受质量比和阻尼比影响,流固耦合效应变弱。此外,还将参数m*ζ值相同而m*和ζ不同的圆柱响应数据进行对比,得出在低雷诺数下,相同m*ζ的圆柱涡激振动响应呈相同的趋势。
The numerical simulation of vortex-induced vibrations of single cylinder and tandem cylinders with different diameter at Re=150, Ur=5 was performed based on the overmesh and DFBI technology in CFD software STAR-CCM+. The cylinder was free to vibrate laterally. During the simulation, mass ratio (1~300) and damping ratio (0~1) was changed respectively at a large range. By this way, the effect caused by mass ratio and damping ratio on vortex-induced vibration was acquired and analyzed. The result show that oscillating amplitude and drag was decreasing as the increase of mass ratio and damping ratio, while the lift was increasing at first and subsequently decreasing. If the mass ratio was low (m*<20), mass ratio and damping ratio were influenced strongly on the cylinder's oscillating amplitude and fluid force. When the mass ratio reached higher, these two parameters were almost not influenced on the cylinder oscillating response and fluid force, which tended to be steady. The fluid-structure interaction became weak. Besides, the relationship between the combining parameter mass-damping ratio m*ζ and vortex-induced vibration at low Reynold number was investigated. And the conclusion of cylinder with the same mass-damping ratio m*ζ tended to have the same response during vortex-induced vibration.
2023,45(15): 20-27 收稿日期:2022-04-13
DOI:10.3404/j.issn.1672-7649.2023.15.005
分类号:P751;TB531
基金项目:国家自然科学基金资助项目(11902368)
作者简介:崔舒意(1999-),男,硕士研究生,研究方向为结构振动和噪声
参考文献:
[1] WILLIAMSON C H K. Vortex-induced vibration[J]. Annual Review of Fluid Mechanics, 2004, 36(1): 42
[2] 及春宁, 等. 圆柱涡激振动研究进展与展望[J]. 海洋技术学报, 2015, 34(1): 13
[3] SCRUTON C. On the wind-excited oscillation of stacks, towers and masts [J]. Procconfon Wind Effects on Buildings & Structures, 1965.
[4] SKOP R A, GRIFFIN O M. An heuristic model for determining flow-induced vibration of offshore structure [J]. Offshore Technology Conference, 1973
[5] VICKERY B J, WATKINS R D. Flow-induced vibrations of cylindrical structures [M]. Richard Silvester, Hydraulics and Fluid Mechanics. Pergamon, 1964: 213–41.
[6] GRIFFIN O M, SKOP R A, RAMBERG S E. The resonant vortex-excited vibrations of structures and cable systems [J]. Offshore Technology Conference 1975.
[7] GRIFFIN O M. Vortex-excited cross-flow vibrations of a single cylindrical tube [J]. Journal of Pressure Vessel Technology, 1980, 102(2): 158–66.
[8] KHALAK A, WILLIAMSON C. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[J]. Journal of Fluids & Structures, 1999, 13(7–8): 813–51
[9] 谷家扬, 等. 质量比对圆柱涡激特性的影响研究 [J]. 振动与冲击, 2016, 35(4): 134–40.
[10] RS G, ASSI, et al. Experimental investigation of flow-induced vibration interference between two circular cylinders [J]. Journal of Fluids and Structures, 2006.
[11] QIN B, ALAM M M, ZHOU Y. Free vibrations of two tandem elastically mounted cylinders in crossflow[J]. Journal of Fluid Mechanics, 2019, 861: 349–81
[12] 及春宁, 等. 串列双圆柱流致振动的数值模拟及其耦合机制[J]. 力学学报, 2014, 46(6): 862–70
[13] 陈威霖, 等. 小间距比下串列双圆柱涡激振动数值模拟研究: 振动响应和流体力[J]. 振动与冲击, 2018, 37(23): 9
[14] 白旭, 陈云. 串列不等直径双圆柱海流能发电振子涡激振动数值模拟[J]. 可再生能源, 2020, 38(12): 7
[15] PARK J, KWON K, CHOI H. Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160[J]. Ksme International Journal, 1998, 12(6): 1200–5
[16] 陈威霖, 及春宁. 单圆柱涡激振动中的振幅不连续和相位切换现象研究[J]. 水动力学研究与进展:A辑, 2016(4): 8
[17] STLBERG E, et al. High order accurate solution of flow past a circular cylinder[J]. Journal of Scientific Computing, 2006, 27(1): 431–41
[18] WILLIAMSON C H K. Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers [J]. Journal of Fluid Mechanics, 1989, 206(1): 579–627.
[19] TRITTON D J. , Experiments on the flow past a circular cylinder at low reynolds numbers[J]. Journal of Fluid Mechanics, 1959, 6(4): 547–67
[20] SHIELS D. , et al. Flow-induced vibration of a circular cylinder at limiting structural parameters [J]. Journal of Fluids & Structures, 2001.
[21] 韦昱呈, 鲁丽. 低雷诺数下圆柱顺流向和横流向涡激振动响应分析[J]. 四川轻化工大学学报:自然科学版, 2021, 34(5): 8
[22] 潘志远. 海洋立管涡激振动机理与预报方法研究 [D]. 上海: 上海交通大学, 2006.
[23] 潘志远, 等. 低质量-阻尼因子圆柱体的涡激振动预报模型[J]. 船舶力学, 2005, 9(5): 10