对采用泵喷推进器的水下航行器进行操纵性预报时,对真实推进器几何进行网格划分并求解时面临的计算周期长、计算开销大的问题。为提高求解效率、简化计算模型,提出采用体积力虚拟盘体代替推进器叶片几何的方法。在准稳态假设的基础上,不考虑航行器的机动运动对流场的影响,通过对航行器推进器的耦合流场进行稳态数值模拟,并对缩比模型拖曳试验,研究航行器推进器的耦合流场特性;在此基础上获得推进器包括定子、转子和导管在内的力矩系数、推力系数与进速系数之间的关系,进一步以虚拟盘体代替推进器叶片几何造型,建立简化仿真模型,通过等效变换方法求解虚拟盘体尺寸参数,对体积力虚拟盘替代推进器叶片情况下推进器的推进能力进行了仿真模拟。仿真结果表明,在误差允许条件下,体积力盘体替代真实叶片得到的数值模拟结果和实验值、实际叶片几何数值模拟仿真结果均比较接近,总推力误差和转矩误差均能控制在5%以内,结论替代方案用于操纵性预报具有较强的可行性。
When predicting the maneuverability of an underwater vehicle with pump jet thrusters, the problems of. long calculation period and high computational cost are faced while the real thruster geometry is meshed and solved. In order to improve the solution efficiency and simplify the calculation model, a method of replacing the propeller blade geometry with a virtual disk of body force is proposed. On the basis of the quasi-steady-state assumption, without considering the influence of the maneuvering motion of the vehicle on the flow field, a steady-state numerical simulation of the coupled flow field of the vehicle's propulsion is carried out, and the tow test of the scaled model is carried out as well to obtained the coupled flow field characteristics of the propeller. On this basis, the relationship between the torque coefficient, thrust coefficient and advance coefficient of the propeller including the moving blade, the stationary blade and the duct is obtained. Further, the virtual disk is used to replace the propeller blade geometry, a simplified simulation model was established, the size parameters of the virtual disk were solved by the equivalent transformation method, and the propulsion capability of the thruster was simulated when the virtual disk was replaced by the body force. The simulation results show that, under the condition of error tolerance, the numerical simulation results obtained by replacing the real blade with the body force disc are relatively close to the experimental value and the numerical simulation results of the actual blade geometry, and the total thrust error and torque error can be controlled within 5%. The alternative scheme is feasible for maneuverability prediction.
2023,45(15): 34-40 收稿日期:2022-09-25
DOI:10.3404/j.issn.1672-7649.2023.15.007
分类号:U661.33
基金项目:武警海警学院2020年院级科研项目
作者简介:张锐(1991-),男,博士,讲师,研究方向为兵器发射与动力推进技术
参考文献:
[1] 吴浩, 欧勇鹏, 向国. 体积力法在船舶自由直航数值计算中的影响因素研究[J]. 武汉理工大学学报(交通科学与工程版), 2017, 41(2): 273–276
WU H, OU Y P, XIANG Guo. Research on the influencing factors of body force method in numerical simulation of ship self-propulsion[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2017, 41(2): 273–276
[2] 庄丽帆, 王志东, 凌宏杰, 等. 大型集装箱船船桨舵干扰特性数值模拟与分析[J]. 江苏科技大学学报(自然科学版), 2016, 30(6): 206–212
ZHUANG L F, WANG Z D, LING H J, et al. Numerical simulation and analysis of the interference characteristics between hull and propeller and rudder of an ultra-large container ship[J]. Journal of Jiangsu University of Science and Technology ( Natural Science Edition), 2016, 30(6): 206–212
[3] 沈海龙, 苏玉民. 基于滑移网格技术的船桨相互干扰研究[J]. 哈尔滨工程大学学报, 2010, 31(1): 1–7
SHEN H L, SU Y M. Use of the sliding mesh technique to analyze interaction between ship hulls and propellers[J]. Journal of Harbin Engineering University, 2010, 31(1): 1–7
[4] BEKHIT A S. Numerical simulation of the ship self propulsion prediction using body force method and fully discretized propeller model[C]//IOP Conference Series: Materials Science and Engineering. IOP Publishing, 2018, 400(4): 042004.
[5] 张建武, 王志鹏, 胡科. 基于数值计算的某油轮快速性虚拟试验研究[J]. 中国造船, 2019, 60(1): 22–29
ZHANG J W, WANG Z P, HU Ke. Research on virtual test of powering performance for a tanker based on numerical calculation[J]. Shipbuilding of China, 2019, 60(1): 22–29
[6] 王慧婷, 毕毅. 基于体积力法的全附体 KCS型船模 PMM运动数值模拟[J]. 中国舰船研究, 2016, 11(4): 29–37,66
WANG H T, BI Y. Numerical simulation on planar motion mechanism of KCS ship model with a body-force propeller model[J]. Chinese Journal of Ship Research, 2016, 11(4): 29–37,66
[7] CAI B, MAO X, XU Q, et al. Simulation of the interaction between ship and ducted propeller with a modified body force method[J]. Ocean Engineering, 2022, 249: 110950
[8] 吴召华, 陈作钢, 代燚. 基于体积力法的船体自航性能数值预报[J]. 上海交通大学学报, 2013, 47(6): 943–949
WU Z H, CHEN Z G, DAI Yi. Mumerical prediction of self-propulsion with a body -force propeller model[J]. Journal of Shanghai Jiao Tong University, 2013, 47(6): 943–949
[9] 魏可可, 高霄鹏. 基于体积力模型的潜艇应急上浮运动数值模拟分析[J]. 中国舰船研究, 2021, 16(2): 49–56.
WEI K K, GAO X P. Numerical simulation of emergency surfacing motion of submarine based on volumetric force model[ J]. Chinese Journal of Ship Research, 2021, 16(2): 49–56.
[10] 傅慧萍, THAD J M, PABLO M C. 一种基于体积力螺旋桨模型的自航计算方法[J]. 船舶力学, 2015, 19(7): 791–796
FU H P, THAD J M, PABLO M C. Computation on self-propulsion at ship point based on a body-force propeller[J]. Journal of Ship Mechanics, 2015, 19(7): 791–796
[11] 王明哲, 王建华, 万德成. 用螺旋桨体积力模型数值模拟船舶自航[C]//第十六届全国水动力学学术会议暨第三十二届全国水动力学研讨会论文集(下册), 2021: 776–785.
WANG M Z, WANG J H, WAN D C. Numerical solution of self-propulsion test with propeller body-force modle[C]//Proceedings of the 16th National Congress on Hydrodynamics & the 32nd national Conference on Hydrodynamics (Volume II) , 2021: 776–785.
[12] 鹿麟. 泵喷推进器设计与流场特性研究[D]. 西安: 西北工业大学, 2016.
[13] WANG C, WENG K Q, GUO C Y. Prediction of hydrodynamic performance of pump propeller considering the effect of tip vortex [J]. Ocean Engineering, 2019: 171, 259–272.
[14] 操戈, 余嘉威, 冯大奎, 等. 基于体积力方法的船舶波浪回转运动数值仿真[J]. 舰船科学技术, 2022, 44(01): 39–45
CAO G, YU J W, FENG Dakui, et al. Numerical simulation of ship turning in wave based on body-force method[J]. Ship Science and Technology, 2022, 44(01): 39–45
[15] 何涛, 冯大奎, 张航, 等. 基于改进体积力方法的实尺度船舶回转运动数值仿真[J]. 中国造船, 2020, 61(S2): 52–63
HE T, FENG D K, ZHANG H, et al. Numerical simulation of full-scale ship turning motion[J]. Shipbuilding of China, 2020, 61(S2): 52–63