作为船舶推进领域的一项卓越应用,轮缘推进器(RDT)具有诸多优点和广阔的应用前景。RDT的结构类似于导管桨(DP),两者主要都由叶片和导管构成。然而,RDT和DP却存在一些结构上的区别,这将引起水动力性能和能量损失分布出现明显的差异。本文采用计算流体力学(CFD)方法,结合SST k-ω湍流模型和熵产理论分析方法对RDT与DP进行数值模拟对比研究。研究结果表明:RDT在全进速范围内比DP具有更高的推力与扭矩,但效率低于DP。二者的能量损失与流动分离、流动摩擦和涡流等不良流动因素密切相关,造成二者能量损失的主要原因为湍流耗散。此外,RDT在全进速范围内比DP也具有更高的熵产。研究结果揭示了二者的水动力及能量损失特性,为其优化设计及能量损失识别提供参考。
As an extraordinary application in marine propulsion field, rim-driven thruster (RDT) has many advantages and a wide application prospect. The structure of a RDT is similar to a duct propeller (DP), as both contain blades and a duct. However, there are some structural differences between a RDT and a DP, which can cause significant discrepancy in hydrodynamics and energy loss distribution. This work presents a comparative numerical study on the RDT and the DP by means of Computational Fluid Dynamics (CFD), which is in combination with SST k-ω turbulence model and entropy production analysis. The results show the RDT features a higher thrust and torque than the DP at all advance coefficient range, but its efficiency is always lower than that of the DP. The energy loss characteristics of both are closely related to the flow separation, the flow friction, the vortex and other negative flow factors. The main reason for generating energy loss is turbulence dissipation. Besides, the RDT features a higher entropy production value than the DP at all advance coefficient range. The above results reveal the hydrodynamics and energy loss characteristics of the RDT and the DP, which provide a reference for their optimization design and energy loss identification.
2023,45(15): 41-45 收稿日期:2022-09-20
DOI:10.3404/j.issn.1672-7649.2023.15.008
分类号:U664.33
基金项目:云南省基础研究专项(202201AU070028);云南省教育厅科学研究基金项目(2022J0637);昆明学院人才引进项目(YJL20023)
作者简介:宋科(1989-),男,博士,讲师,主要从事新能源流体机械方面研究
参考文献:
[1] TUOHY P M, SMITH A C, HUSBAND M. Induction rim-drive for a marine propulsor[R]. MO251, 2010.
[2] 谈微中, 严新平, 刘正林, 等. 无轴轮缘推进系统的研究现状与展望[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(3): 601-605.
TAN Wei-zhong, YAN Xin-ping, LIU Zheng-lin, et al. Technology development and prospect of shaftless Rim-driven propulsion system[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2015, 39(3): 601-605.
[3] SHEN Y, HU P, JIN S, et al. Design of novel shaftless pump-jet propulsor for multi-purpose long-range and high-speed autonomous underwater vehicle[J]. IEEE Transactions on Magnetics, 2016, 52(7): 1–4
[4] SHARKH S M, LAI S H. Slotless PM brushless motor with helical edge-wound laminations[J]. IEEE Transactions on Energy Conversion, 2009, 24(3): 594–598
[5] YAN X P, LIANG X G, WU O Y, et al. A review of progress and applications of ship shaft-less rim-driven thrusters[J]. Ocean Engineering, 2017, 144: 142–156
[6] SHARKH S M, TURNOCK S R, DRAPER G. Performance of a tip-driven electric thruster for unmanned underwater vehicles[C]//The Eleventh International Offshore and Polar Engineering Conference. OnePetro, 2001.
[7] 兰加芬, 欧阳武, 严新平. 无轴轮缘推进器水动力性能分析及桨叶强度校核[J]. 船舶工程, 2018, 40(10): 52–58
LAN Jia-fen, OUYANG Wu, YAN Xin-ping. Hydrodynamic performance analysis and blade strength verification of shaftless rim-driven thruster[J]. Ship Engineering, 2018, 40(10): 52–58
[8] CAI M, YANG C, WU S, et al. Hydrodynamic analysis of a rim-driven thruster based on RANS method[C]//OCEANS 2015-MTS/IEEE Washington. IEEE, 2015: 1-5.
[9] 宋显成, 左哲清, 赵国平, 等. 船舶无轴轮缘推进动态特性数值研究[J]. 舰船科学技术, 2021, 43(11): 46–52
SONG Xian-cheng, ZUO Zhe-qing, ZHAO Guo-ping, et al. Numerical study on dynamic characteristics of ship shaftless rim-driven propulsion[J]. Ship Science and Technology, 2021, 43(11): 46–52
[10] KOCK F, HERWIG H. Entropy production calculation for turbulent shear flows and their implementation in CFD codes[J]. International Journal of Heat and Fluid Flow, 2005, 26(4): 672–680
[11] KOCK F, HERWIG H. Local entropy production in turbulent shear flows: a high-Reynolds number model with wall functions[J]. International Journal of Heat and Mass Transfer, 2004, 47(10): 2205–2215
[12] OOSTERVELD M W C. Wake Adapted Ducted Propellers[M]. Bl^Llothclk der Technische Hogeschool Delft. 1970.
[13] OOSTERVELD M W C. Ducted Propeller Characteristics[C]// RINA Symposium on Ducted Propellers. 1973.
[14] 宋科, 杨邦成. 基于熵产理论的导管桨流动损失特性[J]. 中国舰船研究, 2022, 17(2): 91–97
SONG Ke, YANG Bang-cheng. Flow energy loss characteristics of ducted propeller using entropy production theory[J]. Chinese Journal of Ship Research, 2022, 17(2): 91–97