本文讨论微势近场动力学模型在模拟结构无限变形和有限变形的一般性与普适性。微势近场动力学模型中键长变化采用二次方作为度量,针对平面应力和应变问题提出了应变的非局部度量形式,与经典连续介质力学一致将键长变化分解为两部分,一部分由体积应变引起,另一部分由偏差应变引起。变形键中产生的微势能假设为2个长度变化分量的函数,物质点处的非局部弹性应变能密度通过该物质点近场内键势的积分获得。物质点间采用指数-指数微势函数,通过非局部弹性应变能密度的Fréchet导数,建立依赖于微势函数的一般本构关系。数值实例进一步说明了所提出的模型能够模拟固体材料中的无限和有限变形。
This work discusses a generality of a recently developed micro-potential-based peridynamics and its applications to infinite and finite deformations. A square measure of the bond length change is applied and a generalized Peridynamic strain for plane stress and strain problems is developed to decompose the bond length change into two parts, one resulting from the volumetric PD strain and the other from the deviatoric PD strain. The micro potential generated in the deformed bond is postulated as a function of both length change components. The nonlocal elastic strain energy density at a material point is computed by the integral of the bond potential over the horizon. Through the Fréchet derivative of the nonlocal elastic strain energy density, a general constitutive relation depending on the micro-potential function is well formulated. Numerical examples further illustrate the ability of the proposed model to model both infinite and finite deformations in solid materials.
2023,45(15): 52-58 收稿日期:2023-02-04
DOI:10.3404/j.issn.1672-7649.2023.15.010
分类号:O343.1
基金项目:国家自然科学基金资助项目(52201323); 江苏省自然科学基金资助项目(BK20200998)
作者简介:刘仁伟(1992-),男,博士,讲师,研究方向为冰区结构物载荷特性
参考文献:
[1] 王林, 夏峰. 浮冰与极地船舶抗冰结构碰撞研究[J]. 舰船科学技术, 2022(15): 44.
WANG Lin, XIA Feng. Research on collision between ice floe and polar ship ice-resistant structure[J]. Ship Science and Technology, 2022(15): 44.
[2] WANG D, BIENEN B, NAZEM M, et al. Large deformation finite element analyses in geotechnical engineering[J]. Computers & Geotechnics, 2015, 65: 104–114
[3] YUAN W, WANG H, ZHANG W, et al. Particle finite element method implementation for large deformation analysis using Abaqus[J]. Acta Geotechnica, 2021(12): 1–14
[4] DONG Y. Reseeding of particles in the material point method for soil–structure interactions[J]. Computers and Geotechnics, 2020, 127(1): 103–716
[5] PENG C, BAUINGER C, SZEWC K, et al. An improved predictive-corrective incompressible smoothed particle hydrodynamics method for fluid flow modelling[J]. Journal of Hydrodynamics, 2019, 31(S1): 1–15
[6] SILLING S. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209
[7] 朱其志, 李惟简, 尤涛, 等. 扩展键基近场动力学的几何非线性扩展[J]. 同济大学学报: 自然科学版, 2022, 50(4): 8.
[8] 张建宇, 韩非, 江柏红, 等 基于显微CT图像的近场动力学建模与复合材料微结构破坏模拟[J]. 固体力学学报, 2022, 43(2): 15.
[9] 张恒, 张雄, 乔丕忠. 近场动力学在断裂力学领域的研究进展[J]. 力学进展, 2022, 52: 1-22.
ZHANG Heng, ZHANG Xiong, QIAO Pizhong. Advances of peridynamics in fracture mechanics[J]. Advances in Mechanics, 2022, 52: 1−22.
[10] 王庆, 李家宝, 鞠磊, 等. 一维无源对流扩散方程的近场动力学计算格式[J]. 哈尔滨工程大学学报, 2022, 43(1): 9–16
WANG Qing, LI Jiabao, JU Lei, et al. Peridynamic calculation scheme of a one-dimensional passive convection-diffusion equation[J]. Journal of Harbin Engineering University, 2022, 43(1): 9–16
[11] 薛彦卓, 刘仁伟, 王庆, 等 近场动力学在冰区船舶与海洋结构物中的应用进展与展望[J]. 中国舰船研究, 2021, 16(5): 16.
XUE Yanzhuo, LIU Renwei, WANG Qing, et al. Advances in application of peridynamics for ships and marine structures in ice zones[J]. Chinese Journal of Ship Research, 2021, 16(5): 1–15, 63.
[12] 王超, 曹成杰, 熊伟鹏, 等. 基于近场动力学的破冰阻力预报方法研究[J]. 哈尔滨工程大学学报, 2021, 42(1): 1–7
WANG Chao, CAO Chengjie, XIONG Weipeng, et al. Prediction method of ice-breaking resistance based on peridynamics theory[J]. Journal of Harbin Engineering University, 2021, 42(1): 1–7
[13] 马鹏飞, 李树忱, 袁超, 等. 基于SED准则的近场动力学及岩石类材料裂纹扩展模拟[J]. 岩土工程学报, 2021, 43(6): 9.
[14] 周小平, 王允腾, 钱七虎. 爆破荷载作用下岩石破坏特性的"共轭键"基近场动力学数值模拟研究[J]. 中国科学:物理学、力学、天文学, 2020, 50(2): 13
[15] 杨娜娜, 赵天佑, 陈志鹏, 等. 破片冲击作用下舰船复合材料结构损伤的近场动力学模拟[J]. 爆炸与冲击, 2020, 40(2): 11
YANG Nana, ZHAO Tianyou, CHEN Zhipeng, et al. Peridynamic simulation of damage of ship composite structure underfragments impact[J]. Explosion and Shock Waves, 2020, 40(2): 11
[16] 熊伟鹏, 王超, 傅江妍, 等. 冰球冲击试验的近场动力学方法数值模拟[J]. 振动与冲击, 2020, 39(7): 8
XIONG Weipeng, WANG Chao, FU Jiangyan, et al. Numerical simulation of ice sphere impact test by peridynamics method[J]. Journal of Vibration and Shock, 2020, 39(7): 8
[17] 黄丹, 章青, 乔丕忠等. 近场动力学方法及其应用[J]. 力学进展, 2010, 40(4).
HUANG Dan, ZHANG Qing, QIAO Pizhong, et al. A review on peridynamics method and its applications[J]. Advances in Mechanics, 2010, 40(4).
[18] FAN J, LIU R, LI S, et al. A micro-potential based Peridynamic method for deformation and fracturing in solids: A two-dimensional formulation[J]. Computer Methods in Applied Mechanics and Engineering, 2020: 360
[19] LITTLEWOOD D. Roadmap for peridynamic software implementation[R]. 2015.
[20] PARKS M, LEHOUCQ R, PLIMPTON S, et al. Implementing peridynamics within a molecular dynamics code[J]. Computer Physics Comnunications, 2007, 179(11): 777−783.
[21] SILLING S, ASKARI E. A meshfree method based on the peridynamic model of solid mechanics[J]. Computes and Structures, 2005, 83(17−18): 1526−1535.
[22] LE Q, CHAN W, SCHWARTZ J. A two-dimensional ordinary, state-based peridynamic model for linearly elastic solids[J]. International Journal for Numerical Methods in Engineering, 2014, 98(8): 547−561.