针对泡沫铝三明治板隔声性能较难评估的问题,提出简单可行的基于统计能量评估方法。以泡沫铝三明治板结构为研究对象,基于统计能量法对其隔声性能进行数值计算,并与实验结果进行比较分析,验证了数值计算方法的可行性。利用此方法研究泡沫铝三明治板结构的夹芯泡沫铝厚度、孔隙率以及增加空气层对其隔声性能的影响,发现当夹层泡沫铝厚度为10 mm、孔隙率为70%时三明治板隔声效果最佳,泡沫铝厚度平均每增加10 mm其隔声量增加2 dB,同时增加空气层可以增加其隔声量。
In view of the difficulty in evaluating the sound insulation performance of aluminum foam sandwich panels, a simple and feasible evaluation method based on statistical energy is proposed. Taking the aluminum foam sandwich plate structure as the research object, the sound insulation performance was numerically calculated based on the statistical energy method, and the results were compared with the experimental results to verify the feasibility of the numerical calculation method. Using this method, the influence of sandwich aluminum foam thickness, porosity and increasing air layer on the sound insulation performance of aluminum foam sandwich panel structure was studied. It was found that when the sandwich aluminum foam thickness was 10 mm and the porosity was 70 %, the sound insulation effect of sandwich panel was the best. The sound insulation increased by 2 dB per 10 mm increase in the thickness of aluminum foam on average, and the increase in air layer could increase the sound insulation.
2023,45(15): 65-70 收稿日期:2022-07-04
DOI:10.3404/j.issn.1672-7649.2023.15.012
分类号:U667
作者简介:代昌明(1998-),男,硕士研究生,研究方向为结构与噪声分析
参考文献:
[1] CODE ON NOISE LEVELS ON BOARD SHIPS[S]. 国外-国际标准-国际海事组织 IX-IMO.
[2] SEELIGER H W. Ahuninum foam sandwich (AFS) ready formarket introduction[C]// Cellular Metals: Manufacture, Properties and Applications, Bremen, MIT-Verlag, 2003: 5-12
[3] 顾向彦. 基于波分析方法的船用复合岩棉板隔声量快速计算方法研究[J]. 船舶, 2019, 30(5): 19-24.
Gu Xiangyan. Research on rapid calculation method of sound insulation of marine composite rock wool board based on wave analysis method [J]. Ship & Boat, 2019, 30 (5) : 19-24.
[4] 王录才, 曾松岩, 王芳. 复合结构泡沫铝隔声性能的研究[J]. 机械工程材料, 2006(10): 56-58.
WANG Lucai, ZENG Songyan, WANG Fang. Study on sound insulation performance of aluminum foam composite structure [J]. Materials for Mechanical Engineering, 2006 (10) : 56-58.
[5] 孙明倩, 魏兵, 张会玲. 泡沫铝在船舶舱室中的降噪应用[J]. 河北工业科技, 2014, 31(1): 65-68.
[6] 田天, 陈太林, 赵伟. 相对密度对泡沫铝动态压缩力学性能的影响[J]. 广东建材, 2008(9): 42-43.
[7] 范玉岭, 王敏庆. 复合板隔声性能分析[J]. 噪声与振动控制, 2007(2): 90-93.
FAN Yuling, WANGMinqing. Sound insulation performance analysis of composite plates [J]. Noise and Vibration Control, 2007 (2) : 90-93.
[8] 韩宝坤, 刘伟, 武同华. 泡沫铝消声器的优化与仿真分析[J]. 噪声与振动控制, 2012, 32(5): 185-188.
HAN Baokun, LIU Wei, WU Tonghua. Optimization and simulation analysis of aluminum foam muffler[J]. Noise and Vibration Control, 2012, 32 (5) : 185-188.
[9] 王海宁. 基于Virtual lab的闭孔泡沫铝隔声性能的研究[D]. 秦皇岛: 燕山大学, 2018.
[10] 薛涛. 多孔金属材料泡沫铝的发展[J]. 机械工程材料, 1992(1): 6-7+28.
XUE Tao. Development of porous metal foam aluminum [J]. Materials for Mechanical Engineering, 1992 (1) : 6-7+28.
[11] 魏鹏. 泡沫铝材料弹性模量有限元模拟[J]. 材料导报, 2010, 24(S1): 230-232.
WEI Peng. Finite element simulation of elastic modulus of aluminum foam [J]. Materials Reports, 2010, 24 (S1) : 230-232.
[12] 张乐, 张健, 赵桂平. 闭孔泡沫铝的塑性泊松比[J]. 固体力学报, 2015, 36(3): 244-250.
ZHANG Le, ZHANG Jian, Zhao Guiping. Plastic Poisson's ratio of closed-cell aluminum foam [J]. Chinese Journal of Solid Mechanics, 2015, 36 (3) : 244-250.
[13] 曹曙明, 韩宝坤, 王昌田. 静流阻率对泡沫铝吸声性能影响的分析[J]. 声学与电子工程, 2011(4): 43-45.
[14] 丁晓, 王昌田, 韩宝坤, 等. 泡沫铝三明治板隔声性能实验分析与研究[C]//2009年浙苏黑鲁津四省一市声学学术会议论文集, 2009: 150-153.