基于CFD方法对两节筏式波浪能发电装置进行数值分析,建立二维数值波浪水槽模型,验证波与物的相互作用,并与已公开的实验数据进行对比。研究装置几何尺寸比例、相对波高、波频对装置转换效率和透射系数的影响,结果表明:几何因素对转换效率影响比较明显,当筏板长度相同时,前筏尺寸较小的,转换效率更高;总筏长度增加,转换效率也在增加,在控制成本的前提下,前后对称的筏更适合投入实际生产和使用;在装置几何尺寸相同时,装置转换效率先随波频增大,在装置与波发生共振后,继续增大波频,装置转换效率会减小。而对于透射系数只有在总长度或波频增加时,系数才逐渐变小,装置前后的比例与相对波高对透射系数的大小几乎没有影响。
Based on CFD numerical analysis was carried out on the two-raft-type wave energy converter, a two-dimensional numerical wave flume was established firstly, and then verified the wave interaction with objects, and compared with the published experimental results, the next step to study the proportion of converter geometry size, relative wave height, wave frequency on the extraction efficiency and the influence of the reflection coefficient. The results show that geometric factors have an obvious effect on extraction efficiency. When the raft length is the same, the extraction efficiency is higher if the front raft size is smaller. As the total raft length increases, the extraction efficiency also increases. Under the premise of cost control, the symmetrical raft is more suitable for actual production and use. When the converter geometry size is the same, the converter extraction efficiency increases with the wave frequency first. After the converter resonates with the wave, the converter extraction efficiency decreases with the increase of the wave frequency. As for the reflection coefficient, only when the total length or wave frequency increases, the coefficient gradually decreases, and the ratio before and after the converter and the relative wave height have almost no effect on the reflection coefficient.
2023,45(15): 91-96 收稿日期:2022-03-30
DOI:10.3404/j.issn.1672-7649.2023.15.017
分类号:TM612
基金项目:国家自然科学基金资助项目(51979129)
作者简介:王树齐(1986-),男,博士研究生,副教授,研究方向为船舶与海洋工程流体性能、海洋能开发利用装置的流体性能、计算流体力学。
参考文献:
[1] 崔琳, 李蒙, 白旭. 海洋可再生能源技术现状与发展趋势[J]. 船舶工程, 2021, 43(10): 22–33
CUI Lin, LI Meng, BAI Xu. Current situation and development trend of marine renewable energy technology[J]. Ship engineering, 2021, 43(10): 22–33
[2] ZHENG, S. M, ZHANG, Y. L. Wave diffraction and radiation by multiple rectangular floaters[J]. Journal of Hydraulic Research, 2016, 54(1): 102–115
[3] ARENA F, ROMOLO A, MALARA G, ASCANELLI A. On design and building of a U-OWC wave energy converter in the Mediterranean Sea: A case study. [C]// Paper presented at the ASME 2013International Conference on Ocean, Offshore and Arctic Engineering , 2013.
[4] NING D Z, ZHAO X L. Hydrodynamic performance of a pile-restrained WEC-type floating breakwater: An experimental study[J]. Renewable Energy, 2016, 95: 531–541
[5] ZHAO X L, NING D Z. Experimental investigation of breakwater-type WEC composed of both stationary and floating pontoons[J]. Energy, 2018, 155: 226–233
[6] CHEN Wenchuang, ZHANG Yongliang, YANG James, et al. Experiments and CFD modeling of a dual-raft wave energy dissipator[J]. Ocean Engineering, 2021, 237.
[7] 张恒铭. 波能装置与浮式防波堤集成系统的水动力特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[8] GODA Y, SUZUKI T. Estimation of incident and reflected waves in random wave experiments[C]// Proceeding of 15th Coastal Engineering Conference, Hawaii, 1976: 828−845.
[9] JIANG S C, BAI W, TANG G Q. Numerical simulation of wave resonance in the narrow gap between two non-identical boxes[J]. Ocean Engineering, 2018, 156: 38–60
[10] 孙士艳. 非线性规则波中波能转换装置的水动力特征与能量转化效率研究[D]. 哈尔滨: 哈尔滨工程大学, 2016
[11] BUDAR K, FALNES J, A resonant point absorber of ocean-wave power[J]. Nature,1975(8): 478−479.