为了提升网络通信的安全性,提出基于物联网技术的舰船网络安全监测预警方法。感知层利用传感器采集舰船网络设备数据;传输层中数据传输单元依据传输控制协议,封装打包各传感器采集的舰船网络数据,并传输至融合层;融合层中数据融合单元,利用加权融合算法,融合各传感器采集的网络数据;应用层中网络安全监测单元,利用集对分析算法,结合融合后的网络数据,计算舰船网络安全态势值,监测舰船网络的安全态势;利用网络安全预警单元对比分析安全态势值与设置阈值,当安全态势值低于设置阈值,则发出警报,实现舰船网络安全预警。实验证明,该方法可有效融合舰船网络设备相关数据,精准监测舰船网络的安全态势,完成网络安全监测预警。
In order to improve the security of network communication, a ship network security monitoring and warning method based on Internet of Things technology is proposed. The perception layer utilizes sensors to collect data from ship network devices. The data transmission unit in the transmission layer encapsulates and packages the ship network data collected by each sensor based on the transmission control protocol, and transmits it to the fusion layer. The data fusion unit in the fusion layer utilizes a weighted fusion algorithm to fuse the network data collected by each sensor, The network security monitoring unit in the application layer utilizes set pair analysis algorithm and combines the fused network data to calculate the security situation value of the ship network and monitor the security situation of the ship network. Compare and analyze the security situation value with the set threshold using the network security warning unit. When the security situation value is lower than the set threshold, an alarm will be issued to achieve ship network security warning. The experiment proves that this method can effectively integrate data related to ship network equipment. This method can accurately monitor the security situation of ship networks and complete network security monitoring and warning.
2023,45(15): 123-126 收稿日期:2023-03-29
DOI:10.3404/j.issn.1672-7649.2023.15.024
分类号:TP393.08
基金项目:江西省教育厅科学技术研究项目(2080711)
作者简介:詹雪(1985-),女,硕士,讲师,研究方向为计算机网络及电子商务物流
参考文献:
[1] 丁朝晖, 张伟, 杨国玉, 等. 多维工控系统网络安全风险监测预警系统研究与应用[J]. 电子技术应用, 2023, 49(2): 76–79
DING Zhao-hui, ZHANG Wei, YANG Guo-yu, et al. Research and application of multi-dimensional industrial control system network security risk monitoring and early warning system[J]. Application of Electronic Technique, 2023, 49(2): 76–79
[2] 杨家轩, 许洲锦, 来源, 等. 基于概率攻击图的船舶网络安全评估模型[J]. 大连海事大学学报, 2023, 49(1): 26–33
YANG Jia-xuan, XU Zhou-jin, LAI Yuan, et al. Ship cyber security assessment model based on probability attack graph[J]. Journal of Dalian Maritime University, 2023, 49(1): 26–33
[3] 陈龙, 吕磊, 杨旭东. 基于改进CRITIC的灰色关联网络安全态势评估方法[J]. 电讯技术, 2022, 62(4): 517–525
CHEN Long, LV Lei, YANG Xu-dong. A Network security situation assessment method based on improved CRITIC and grey correlation analysis[J]. Telecommunication Engineering, 2022, 62(4): 517–525
[4] 张红斌, 尹彦, 赵冬梅, 等. 基于威胁情报的网络安全态势感知模型[J]. 通信学报, 2021, 42(6): 182–194
ZHANG Hong-bin, YIN Yan, ZHAO Dong-mei, et al. Network security situational awareness model based on threat intelligence[J]. Journal on Communications, 2021, 42(6): 182–194
[5] 赵冬梅, 宋会倩, 张红斌. 基于时间因子和复合CNN结构的网络安全态势评估[J]. 计算机科学, 2021, 48(12): 349–356
ZHAO Dong-mei, SONG Hui-qian, ZHANG Hong-bin. Network security situation based on time factor and composite CNN structure[J]. Computer Science, 2021, 48(12): 349–356
[6] 李洋, 刘天莺, 朱建明, 等. 基于Q学习与贝叶斯博弈的物联网安全[J]. 计算机工程与设计, 2022, 43(4): 901–906
LI Yang, LIU Tian-ying, ZHU Jian-ming, et al. Security of internet of things based on Q-learning and Bayesian game[J]. Computer Engineering and Design, 2022, 43(4): 901–906
[7] 赵静, 李俊, 龙春, 等. 基于BagR-CNN检测模型的物联网网关安全加固方法[J]. 高技术通讯, 2023, 33(1): 1–14
ZHAO Jing, LI Jun, LONG Chun, et al. Security reinforcement method of IoT gateway based on Bag R-CNN detection model[J]. Chinese High Technology Letters, 2023, 33(1): 1–14