为提升低质量舰船航行图像质量,为舰船航行监测提供可靠依据,设计基于视觉感知技术的低质量舰船航行图像增强系统。该系统以同步动态随机存取内存中存储的低质量舰船航行图像为基础,利用FPGA矫正图像畸变后,在SDRAM控制模块的控制下,经由通信模块将图像传送至图像增强模块中,该模块采用视觉感知技术,增强舰船航行图像后,通过PCI总线传送至PC机中,呈现低质量舰船航行图像增强结果。测试结果表明:该系统具有较好的低质量图像增强性能,增强后图像的度平均梯度和图像信息熵的结果均在0.92以上;图像的边缘轮廓质量较好,有效改善了图像模糊情况,并且避免图像增强后发生色彩失真现象,图像细节的完整性较好。
In order to improve the quality of low-quality ship navigation images and provide reliable basis for ship navigation monitoring, a low-quality ship navigation image enhancement system based on visual perception technology is designed. The system is based on low-quality ship navigation images stored in synchronous dynamic random access memory. After correcting image distortion using FPGA, the image is transmitted to the image enhancement module through the communication module under the control of the SDRAM control module. The module uses visual perception technology to enhance the ship navigation images, which are then transmitted to a PC through PCI bus, presenting the results of low-quality ship navigation image enhancement. The test results show that the system has good low-quality image enhancement performance, and the results of the degree average gradient and image information entropy of the enhanced image are both above 0.92. The edge contour quality of the image is good, effectively improving the image blurring situation; And to avoid color distortion after image enhancement, the integrity of image details is good.
2023,45(15): 135-138 收稿日期:2023-04-18
DOI:10.3404/j.issn.1672-7649.2023.15.027
分类号:TP391
作者简介:蒋顺生(1982-),男,硕士,工艺美术师,研究方向为艺术设计及数字媒体艺术
参考文献:
[1] 高文, 肖海峰. 基于动态双稳随机共振的低照度彩色图像增强[J]. 液晶与显示, 2021, 36(6): 861–868
GAO Wen, XIAO Hai-feng. Low illumination color image enhancement based on dynamic bistable stochastic resonance[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(6): 861–868
[2] 刘畅, 钱宇华, 王克琪, 等. 高速快门诱导的低照度图像弱参考视觉增强方法[J]. 重庆邮电大学学报(自然科学版), 2021, 33(5): 851–860
LIU Chang, QIANG Yu-hua, WANG Ke-qi, et al. High-speed shutter-induced weak reference enhancement method for low-illumination images[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2021, 33(5): 851–860
[3] 王奎, 黄福珍. 基于光照补偿的HSV空间多尺度Retinex图像增强[J]. 激光与光电子学进展, 2022, 59(10): 102–113
WANG Kui, HUANG Fu-zhen. Multiscale retinex image enhancement in HSV space based on illumination compensation[J]. Laser & Optoelectronics Progress, 2022, 59(10): 102–113
[4] 徐超越, 余映, 何鹏浩, 等. 基于U-Net的多尺度低照度图像增强网络[J]. 计算机工程, 2022, 48(8): 215–223
XU Chao-yue, YU Ying, HE Peng-hao, et al. Multi-Scale Low-Light Image Enhancement Network Based on U-Net[J]. Computer Engineering, 2022, 48(8): 215–223
[5] 王兴瑞, 朴燕, 王雨墨. 复合残差网络在低照度图像增强中的技术研究[J]. 液晶与显示, 2022, 37(4): 508–518
WANG Xing-rui, PIAO Yan, WANG Yu-mo. Technical research of composite residual network in low illumination image enhancement[J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(4): 508–518
[6] 吴建斌, 牛玉贞, 张宇杰. 基于图像自身信息感知的无参考低光照图像增强[J]. 小型微型计算机系统, 2021, 42(6): 1243–1249
WU Jian-bin, NIU Yu-zhen, ZHANG Yu-jie. Non-reference low-light image enhancement method based on the image's Self-information perception[J]. Journal of Chinese Computer Systems, 2021, 42(6): 1243–1249
[7] 马璐. 基于多尺度小波U型网络的低光照图像增强[J]. 红外技术, 2022, 44(4): 410–420
MA Lu. Low-light Image Enhancement Based on Multi-scale Wavelet U-Net[J]. Infrared Technology, 2022, 44(4): 410–420