为了减少传递到鱼雷自导基阵的振动能量,采用声学黑洞原理设计了一种多边形减振环结构。采用加速度振级落差表征其减振性能,开展激振器激励下的多边形结构减振性能试验研究。结果表明,多边形减振结构在50~10 kHz的频率范围内具有良好的减振效果。试验结果充分说明了本文设计的多边形减振结构具有轻质、高效、宽频的减振特点,具有广泛的潜在应用价值。
In order to reduce the vibration energy transferred to the torpedo homing array,a polygonal damping ring structure was designed based on acoustic black hole principle.The vibration reduction performance of polygonal structure was characterized by the drop of acceleration vibration stage,and the experimental study on the vibration performance of polygonal structure under the excitation of shaker was carried out.The results show that polygonal vibration damping structure has good vibration damping effect in the frequency range of 50~10 kHz.The test results fully show that the polygonal damping structure designed in this paper has the characteristics of light weight,high efficiency and wide frequency vibration reduction,and has a wide range of potential application value.
2023,45(15): 163-167 收稿日期:2022-08-25
DOI:10.3404/j.issn.1672-7649.2023.15.034
分类号:TJ630.1;TB71.2
作者简介:马锐磊(1987-),男,硕士,高级工程师,研究方向为鱼雷自导技术
参考文献:
[1] 尹韶平, 刘瑞生. 鱼雷总体技术[M]. 北京: 国防工业出版社, 2011
[2] BOWYER E P, KRYLOV V V. Damping of flexural vibrations in turbofan blades using the acoustic black hole effect[J]. Applied Acoustics, 2014, 76: 359–365
[3] BOWYER E P, O’BOY D J, KRYLOV V V, et al. Ex- perimental investigation of damping flexural vibrations in plates containing tapered indentations of power-law profile[J]. Applied Acoustics, 2013, 74(4): 553–560
[4] KRYLOV V. Acoustic black holes: recent develop- ments in the theory and applications[J]. IEEE Trans Ul- trason Ferroelectr Freq Control, 2014, 61(8): 1296–1306
[5] FEURTADO P A, CONLON, S C. Wavenumber trans- form analysis for acoustic black hole design[J]. The Journal of the Acoustical Society of America, 2016, 140(1): 718–727
[6] MA L, CHENG L. Sound radiation and transonic boundaries of a plate with an acoustic black hole[J]. The Journal of the Acoustical Society of America, 2019, 145(1): 164–172
[7] O’BOY D J, KRYLOV V V, KRALOVIC V. Damping of flexural vibrations in rectangular plates using the acoustic black hole effect[J]. Journal of Sound and Vi- bration, 2010, 329(2010): 4672–4688
[8] BOWYER E P, NASH P, KRYLOV V V. Damping of flexural vibrations in glass fiber composite plates and honeycomb sandwich panels containing indentations of power-law profile[J]. Journal of the Acoustical Society of America, 2013, 132(3): 2041
[9] LI X, DING Q. Analysis on vibration energy concentra- tion of the one-dimensional wedge-shaped acoustic black hole structure[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(10): 2137–2148
[10] 曾鹏云, 郑玲, 左益芳, 等. 基于半解析法的一维圆锥形声学黑洞梁能量聚集效应研究[J]. 噪声与振动控制, 2018, 38(S1): 210–214
ZENG P Y, ZHENG L, ZUO Y F, et al. Analysis of theenergy concentration effect of flexural vibrations in ta-pered rods with power-law profile based on semi-analytical method[J]. Noise And Vibration Control, 2018, 38(S1): 210–214
[11] L. Tang and L. Cheng, Ultrawide band gaps in beams with double-leaf acoustic black hole indentations [J]. The Journal of the Acoustical Society of America, 2017. 142: 2802.
[12] 季宏丽, 黄薇, 裘进浩, 等. 声学黑洞结构应用中的力学问题. 力学进展, 2017, 47: 201710.
JI H L, HUANG W, QIU J H, et al. Mechanics problems in application of acoustic black hole structure. Advances in Mechanics, 2017, 47: 201710.