水面无人艇的路径规划是近年的研究热点之一,也是实现USV完全自主航行的关键技术之一。针对USV路径规划问题,本文从路线规划、轨迹优化与运动规划3方面总结水面无人艇路径规划技术的研究现状,并结合近年各学者的研究成果,分别分析了各方法的优劣,以及每种方法为了适应USV运动特征而进行的优化改进。最后对无人艇运动规划的一种发展趋势作简要展望,为未来的研究工作提供思路。
The path planning of the USV is one of the research hotspots in recent years, and it is one of the key technologies to realize the fully autonomous navigation of USV. In view of the USV path planning problem, this paper summarizes the research status of the path planning technology of the USV from three aspects: route planning, trajectory optimization and motion planning. This paper analyzes the advantages and disadvantages of each method, and the optimization and improvement of each method in order to adapt to the USV motion characteristics. Finally, a brief prospect of a development trend of USV motion planning is given to provide ideas for future research work.
2023,45(16): 1-6 收稿日期:2022-7-17
DOI:10.3404/j.issn.1672-7649.2023.16.001
分类号:U675.79
作者简介:高霄鹏(1971-),女,博士,副教授,研究方向为无人总体技术
参考文献:
[1] 周志华. 机器学习[M]. 北京: 清华出版社, 2016.
[2] FARLEY K A, WILLIFORD K H, STACK K M, et al. Mars 2020 mission overview[J]. Space Science Reviews, 2020, 216(8): 1–41
[3] BUEHLER M, IAGNEMMA K, SINGH S, et al. The DARPA urban challenge: autonomous vehicles in city traffic[M]. Berlin: Springer, 2009.
[4] GEORGE Y, DANIEL J P, et al. Ground target detection using cooperative unmanned aerial systems[M]. Kluwer Academic Publishers, 2012.
[5] 汪洋. 海洋智能无人系统技术[M]. 上海: 上海科学技术出版社, 2020.
[6] YAN R, PANG S, SUN H, et al. Development and missions of unmanned surface vehicle[J]. Journal of Marine Science and Application, 2010, 9(4): 451–457
[7] SHAFER A J, BENJAMIN M R, LEONARD J J, et al. Autonomous cooperation of heterogeneous platforms for sea-based search tasks[C]//Oceans, IEEE, 2008: 1–10.
[8] SVEC, P, GUPTA S K. Automated synthesis of action selection policies for unmanned vehicles operating in adverse environments[J]. Autonomous Robots, 2012, 32(2): 149–164
[9] 董晓明. 海上无人装备体系概览[M]. 哈尔滨: 哈尔滨工程大学出版社, 2020.
[10] LAVALLE S M. Planning Algorithms[M]. Cambridge: Cambridge University Press, 2006.
[11] LYDIA E K, STEVEN M L. Motion Planning[M]. Springer Handbook of Robotics, 2008.
[12] 唐永兴, 朱战霞, 张红文, 等. 机器人运动规划方法综述[J]. 航空学报, 2023, 44(2):181–212.
[13] ZHE D, WEN, et al. Motion planning for unmanned surface vehicle based on trajectory unit[J]. Ocean Engineering, 2018.
[14] LEKKAS A M. Guidance and path-planning systems for autonomous vehicles[J]. Department of Engineering Cybernetics, 2014.
[15] LI H, WANG W J, LI K Q. A parallel parking path plan based on the B spline theory[J]. China Highw, 2016(9): 143–151.
[16] LIU Huajun, YANG Jingyu, LU Jianfeng, et al. Several algorithmic researches on motion planning for autonomous mobile robot[J]. Nanjing University of Science and Technology, 2010.
[17] DIJKSTRA E W. A note on two problems in connection with graphs[J]. Numerische Mathematik, 1959: 269–271.
[18] HART P, NILSSON N, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions of Systems Science and Cybernetics, 1968, 4(2): 100–107
[19] WARREN C W. A technique for autonomous underwater vehicle route planning[J]. IEEE Journal of Oceanic Engineering, 1990, 15: 199–204
[20] HSU D, JIANG T, REIF J, et al. Abstract the bridge test for sampling narrow passages with probabilistic roadmap planners[C]//IEEE International Conference on Robotics and Automation, 2003: 4420–4426.
[21] FERGUSON D, LIKHACHEV M, STENTZ A. A guide to heuristic-based path planning[C]//In Proceedings of International Conference on Automated Planning and Scheduling, Jerusalem, Israel, 2005: 9–18.
[22] SONG R, LIU Y, Bucknall R. Smoothed A* algorithm for practical unmanned surface vehicle path planning[J]. Applied Ocean Research, 2019, 83: 9–20
[23] LI M, ZHANG H . AUV 3D path planning based on A* algorithm[C]//2020 Chinese Automation Congress (CAC), 2020.
[24] ZHANG C B, GONG Y, LI J J, et al. Automatic path planning for autonomous underwater vehicles based on an adaptive differential evolution[C]//In Proceedings of Annual Conference on Genetic and Evolutionary Computation, ACM, Vancouver, Canada, 2014: 89–96.
[25] 张玉奎. 水面无人艇路径规划技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2008.
[26] GIORDANO P R, VENDITTELLI M. Shortest paths to obstacles for a polygonal dubins car[J]. IEEE Transactions on Robotics, 2009, 25(5): 1184–1191
[27] 李红, 王文军, 李克强. 基于 B 样条理论的平行泊车路径规划[J]. 中国公路学报, 2016(9): 143–151
[28] 王怿, 祝小平, 周洲. 一种基于Clothoid曲线的无人机路径规划算法[J]. 西北工业大学学报, 2012(6): 874–878
[29] DAHL A R. Path planning and guidance for marine surface vessels[D]. Institute for Teknisk Kybernetikk, 2013.
[30] WANG Z, XIANG X, YANG J, et al. Composite astar and b-spline algorithm for path planning of autonomous underwater vehicle[C]//2017 IEEE 7th International Conference on Underwater System Technology: Theory and Applications (USYS), IEEE, 2018.
[31] 刘乐柱, 肖长诗, 文元桥. 基于Dubins路径的无人艇运动规划算法[J]. 计算机应用, 2017, 37(7): 2114–2117+2123
[32] SZCZERBA R J, GALKOWSKI P. Robust algorithm for real-time route planning[J]. IEEE Transactions on Aerospace & Electronic Systems, 2000, 36(3): 869–878
[33] KIM H, PARK B, MYUNG H . Curvature path planning with high resolution graph for unmanned surface vehicle[J]. Springer Berlin Heidelberg, 2013.
[34] HANGUEN, KIM, DONGHOON. Angular rate-constrained path planning algorithm for unmanned surface vehicles[J]. Ocean Engineering, 2014.
[35] LEE T, KIM H, CHUNG H, et al. Energy efficient path planning for a marine surface vehicle considering heading angle[J]. Ocean Engineering, 2015, 10(1): 118–131
[36] WANG N, XU H. Dynamics-constrained global-local hybrid path planning of an autonomous surface vehicle[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 6928–6942.
[37] LIU, WANG, ZHANG. A method of path planning on safe depth for unmanned surface vehicles based on hydrodynamic analysis[J]. Applied Sciences, 2019, 9(16): 3228
[38] PC A, YHB C, EP A. Global path planning for autonomous ship: a hybrid approach of fast marching square and velocity obstacles methods - sciencedirect[J]. Ocean Engineering, 2014.
[39] 康亮. 自主移动机器人运动规划的若干算法研究[D]. 南京: 南京理工大学, 2010.
[40] XU N, CHEN X, KONG Q, et al. Motion planning for robot with nonholonomic constraints[J]. Robot, 2011(6): 666–672.
[41] DU M, MEI T, CHEN J, et al. RRT-based motion planning algorithm for intelligent vehicle in complex environments[J]. Robot, 2015(4): 443–450.
[42] JING-ZE S, BIN D, EN-ZHONG S, et al. An improved RRT path planning algorithm[J]. Acta Electron, 2010(38): 225–228.
[43] LIU Zhengfeng, ZHANG Longhui, WEI Naxin, et al. Study on path planning and following control of unmanned surface vehicles in restricted areas[J]. Journal of Ship Mechanics, 2021, 25(9): 1127–1136.
[44] GU S, ZHOU C, WEN Y, et al. A motion planning method for unmanned surface vehicle in restricted waters[J]. Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment, 2020, 234(2): 332–345.
[45] HAN S, WANG L, WANG Y. An efficient motion planning based on grid map: predicted trajectory approach with global path guiding[J]. Ocean Engineering, 2021 (238).
[46] DU Zhe, WEN Yuanqiao. Motion planning for unmanned surface vehicle based on trajectory unit[J]. Ocean Engineering, 2018(151):46–56.
[47] DU Z, WEN Y, XIAO C, et al. Trajectory-cell based method for the unmanned surface vehicle motion planning[J]. Applied Ocean Research, 2019, 86: 207–221
[48] WILLNERS J S, PETILLOT Y R, PATRON P, et al. Kinodynamic path planning for following and tracking vehicles[C]// Oceans 2018 MTS/IEEE Charleston, IEEE, 2018.