随着国际货运需求的增加,大型集装箱船的吨位越来越大,为节约建造成本,在设计阶段有必要对集装箱船结构进行优化。本文以超大型集装箱船的板架结构作为研究对象,探索拓扑优化在箱船中的应用。在指定应力强度的约束条件、以结构重量最轻为优化目标下,对中横隔板的几何形状进行优化计算。此外,为了使优化后的结构拓扑形式便于生产、加工,约束条件还增加了轴对称条件。迭代优化后的结果表明,横隔板下部材料可以去除,一方面节约船体空间,有利于管道、电缆的铺设;另一方面结构重量(相对于原横隔板)减少了18%,而最大应力只增加1.5%。在箱船横隔板设计中,可以采用相同的方法进行拓扑优化以获得更好的拓扑形状。
With the study of typical main structure (shell and middle section structure), the application of structural topology optimization design method in the design is discussed. The shape of the transverse partition is optimized under the constraints and the lightest structure weight, in addition, in order to make the optimized structure topology form to facilitate production and processing, the constraints add symmetry conditions.The results after iterative optimization show that the lower material of the structure can be removed, on the one hand, save the hull space and facilitate the laying of pipeline and cable; on the other hand, the structure weight (relative to the original transverse partition) is reduced by 28%.It is shown that in the current transverse partition design, the same method for topological optimization design can be used to obtain excellent design forms.
2023,45(16): 27-31 收稿日期:2022-4-7
DOI:10.3404/j.issn.1672-7649.2023.16.006
分类号:U674.131
基金项目:国家自然科学基金资助项目(51508238)
作者简介:李海洲(1981-),男,研究员,研究方向为船舶工程结构研发
参考文献:
[1] 程远胜, 刘甜甜, 刘均. 船舶肘板拓扑优化设计[J]. 中国舰船研究, 2015, 10(5): 53–58.
CHEN Yuan-sheng, LIU Tian-tian, LIU Jun. Topology optimization of ship bracket structure[J]. Chinese Journal of Ship Reseraver, 2015, 10(5): 53–58.
[2] 邓林义, 林焰, 陈明, 等. 采用拓扑遍历方法优化船舶设计计划[J]. 计算机集成制造系统, 2007, 13(3): 431–436.
DENG Lin-yi, LIN Yan, CHEN Ming, et al. Optimization on ship design planning by topological ergodicity[J]. Computer Integrated Manufacturing System, 2007, 13(3): 431–436.
[3] 张会新, 杨德庆. 典型船舶板架拓扑与形状优化设计[J]. 中国舰船研究, 2015, 10(6): 27–33.
ZHANG Hui-xin, YANG De-qing. Typical shape and topology optimization design of the ship grillage structure[J]. Chinese Journal of Ship Research, 2015, 10(6): 27–33.
[4] 尚高峰. 轻量化船舶结构极限强度研究[D]. 北京: 中国舰船研究院, 2011.
[5] 王洁松. 海上船舶物联网监测拓扑结构可靠性设计与优化分析[J]. 舰船科学技术, 2018, 40(6): 175–177.
WANG Jiesong. Reliability design and optimization analysis of marine ship internet of things monitoring to pology[J]. Ship Science and Technology, 2018: 175–177.
[6] DAIFUKU M, NISHIZU T, et al. Design methodology using topology optimization for anti-vibration reinforcement of generators in a ship’s engine room[J]. Proceedings of the Institution of Mechanical Engineers, Part M:Journal of Engineering for the Maritime Environment, 2016, 230(1): 216–226
[7] PARSONS M G. Applications of optimization in early stage ship design[J]. Ship Science and Technology, 2009, 3(5): 9–32
[8] CAO L. Design and optimization of elastic diaphragm in miniature high-temperature pressure sensor[J]. Advanced Materials Research, 2012, 591–593: 1260–1264
[9] 韩松言. 基于多智能体的船舶电网拓扑结构优化[D]. 哈尔滨:哈尔滨工程大学, 2020.
[10] RIGO P, CAPRACE J D. Optimization of Ship Structures[J]. Marine Structures, 2017, 203(18): 1193–1200
[11] 赵宏旺. 多工况应力下船舶多载荷作用下连续体结构拓扑优化[J]. 舰船科学技术, 2019, 41(6): 1–3.
ZHAO Hong-wang. Topology optimization of continuum structure under multi-load of ship under multi-condition stress[J]. Ship Science and Technology, 2019, 41(6): 1–3.
[12] QU D, LI X, et al. The stress and stiffness analysis of diaphragm[J]. MATEC Web of Conferences, 2017, 95: 1011
[13] Zhou J, Wang C, et al. Multi-objective optimization of a spring diaphragm clutch on an automobile based on the non-dominated sorting genetic algorithm (NSGA-II)[J]. Mathematical and Computational Applications, 2016, 21(4): 47.
[14] SÖĞÜT O S, ARSLAN O. Improving energy efficiency of ships through optimisation of ship operations[R]. University, Istanbul Technical, 2014.
[15] 孙志军. 基于拓扑优化的船舶机舱发电机抗振加固设计方法[D]. 大连: 大连理工大学, 2019.
[16] 钦伦洋. 基于拓扑优化的船舶结构轻量化研究[D]. 大连: 大连海事大学, 2016.
[17] 张会新. 船舶结构拓扑优化设计及声学评估方法研究[D]. 上海: 上海交通大学, 2016.
[18] 吴贝尼. 船舶中横剖面拓扑优化研究及程序系统开发[D]. 上海: 上海交通大学, 2020.