角式双球阀作为一种新型通海阀,针对其内部流道结构在不同流速下产生的噪声问题,基于计算流体动力学(CFD)与直接边界元法(BEM)对其进行流噪声数值模拟研究,分析2种不同结构形状角式双球阀的流噪声声压级以及其不同流速下的流噪声变化规律。结果表明,2种结构声压级均随频率的升高而降低,低流速时,双球阀低频特性更明显;开放式流道结构流噪声声压级明显高于封闭流道结构,由于封闭流道结构内部流体较好的流通性,其噪声总声压较开放式结构下降约26.9%,降幅为17 dB(A),封闭结构设计可以有效降低通海阀内流道流体脉动压力与流噪声,从而为新型通海阀的降噪优化提供一种新思路。
Angle double ball valve is a new type of sea valve, aiming at the noise problem caused by its internal flow channel structure at different flow rates, the flow noise numerical simulation of sea double ball valves is carried out based on computational fluid dynamics (CFD) and direct boundary element method (BEM). The flow noise sound pressure level of two kinds of angle double ball valves with different structure shapes and the variation law of flow noise at different flow rates are analyzed. The results show that the sound pressure level of the two structures decreases with the increase of frequency, and the low frequency characteristic of double ball valve is more obvious at low flow rate. The sound pressure level of the flow noise of the open channel structure is obviously higher than that of the closed channel structure. Due to the good fluid fluidity of the closed channel structure, the total noise sound pressure level of the closed channel structure is reduced by about 26.9% compared with the open structure, with a decrease of 17dB (A). The closed structure design can effectively reduce the fluid pulsating pressure and flow noise in the inner channel of the sea valve, which provides a new idea for the noise reduction optimization of the new type sea valve.
2023,45(16): 48-54 收稿日期:2022-8-25
DOI:10.3404/j.issn.1672-7649.2023.16.010
分类号:TH134
作者简介:贾文尖(1997-),男,硕士研究生,研究方向为振动与噪声
参考文献:
[1] 曾杏. 钛合金通海阀结构及性能优化研究[D]. 哈尔滨: 哈尔滨工程大学, 2015.
[2] 郭涛. 管路的流致振动及噪声研究[D]. 武汉: 华中科技大学, 2012.
[3] 王开春, 马洪林, 赵凡, 等. 围壳形状对潜艇流致噪声的影响计算[J]. 空气动力学学报, 2018, 36(5): 774–779
WANG Kaichun, MA Honglin, ZHAO Fan, et al. Numerical simulation for effects of submarine fairwater shape on flow-induced noise[J]. Acta Aerodynamica Sinica, 2018, 36(5): 774–779
[4] 方超, 马士虎, 蔡标华, 等. 基于BEM的通海阀流噪声与流激振动噪声数值模拟对比研究[J]. 舰船科学技术, 2018, 40(3): 30–34
FANG Chao, MA Shi-hu, CAI Biao-hua. Numerical simulation contrastive study on flow noise and flow induced vibration noise of sea valve based on BEM[J]. Ship Science and Technology, 2018, 40(3): 30–34
[5] 徐国栋, 孙启, 郑荣等. 基于FEM/AML的船舶海水冷却系统出海管路流噪声预报[J]. 舰船科学技术, 2021, 43(7): 102–106
XU Guo-dong, SUN Qi, ZHENG Rong flow noise prediction of sea water cooling system discharge pipe based on FEM/AML [J]. Ship Science and Technology, 2021, 43(7): 102–106
[6] 桂瞬丰, 幸福堂, 李群燕, 等. 基于大涡模拟的通海阀噪声分析[J]. 武汉科技大学学报(自然科学版), 2015(2): 129–133
GUI Shunfeng, XING Futang, LI Qunyan, et al. Noise analysis of a sea suction valve based on LES[J]. Journal of Wuhan University of Science and Technology, 2015(2): 129–133
[7] 聂欣, 张童伟, 朱羊羊, 等. 直筒笼式阀门流噪声数值模拟[J]. 热力发电, 2017, 46(6): 80–87
NIE X, ZHANG T W, ZHU Y Y, et al. Numerical simulation on flow noise of enterprise’s valve[J]. Thermal Power Generation, 2017, 46(6): 80–87
[8] WEI L, ZHU G, QIAN J, et al. Numerical simulation of flow-induced noise in high pressure reducing valve[J]. PLoS ONE, 2015, 10(6): e0129050.
[9] LIU K, QI S, et al. Flow-induced noise simulation using detached eddy simulation and the finite element acoustic analogy method[J]. Advances in Mechanical Engineering, 2016, 8(7): 1–8
[10] LAUNDER B E, SPALDING D B . Lectures in mathematical model of turbulence[J]. Academic Press, 1972.
[11] 徐峥, 王德忠, 王志敏, 等. 核电站主蒸汽隔离阀气流诱发振动与噪声的数值分析[J]. 原子能科学技术, 2010, 44(1): 48–53
XU Zheng, WANG De-zhong, WANG Zhi-min. et al Numerical analysis for vibration and noise due to airflow of main steam isolation valve in nuclear power station[J]. Atomic Energy Science and Technology, 2010, 44(1): 48–53
[12] 李树勋, 赵子琴, 张云龙, 等. 高温高压过热蒸汽疏水阀消声减振研究[J]. 振动与冲击, 2011, 30(10): 116–121
LI Shuxun, ZHAO Ziqin, ZHANG Yunlong. Noise elimination and vibration reduction for a superheat steam trap with high temperature and high pressure[J]. Journal of Vibration and Shock, 2011, 30(10): 116–121
[13] LIGHTHILL M J. On sound generated aerodynamically. I. General Theory[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Science, 1952, 211(1107): 564-587.
[14] LIGHTHILL. M J. On sound generated aerodynamically. II. turbulence as a source of sound[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Science. 1954, 222(1148): 1 32
[15] CURLE N. The influence of solid boundaries upon aerodynamic sound[J]. Proceedings of the Royal Society A, 1955, 231(1187): 505-514.
[16] FFOWCS WILLIAMS J. E, HAWKINGS D. L. Sound generation by turbulence and surface in arbitrary motion[J ]. Philosophical Transactions of the Royal Society of London, Series A, 1969, 264: 321 342.
[17] 王春旭, 吴崇健, 陈乐佳, 等. 流致噪声机理及预报方法研究综述[J]. 中国舰船研究, 2016, 11(1): 57–67
WANG Chun-xu, WU Chong-jian, CHEN Le-jia, et al. A comprehensive review on the mechanism of flow-induced noise and related predictions methods[J]. Chiese Journal of Ship Research, 2016, 11(1): 57–67
[18] 吕世金, 俞孟萨, 李东升. 水下航行体水动力辐射噪声预报方法研究[J]. 水动力学研究与进展A辑, 2007, 22(4): 475–482
LYU S J, YU M S, LI D S. Prediction of hydrodynamic radiation noise of underwater vehicle[J]. Journal of Hydrodynamics (Ser. A), 2007, 22(4): 475–482
[19] 湛含辉, 朱辉, 陈津端, 等. 90°弯管内二次流(迪恩涡)的数值模拟[J]. 锅炉技术, 2010, 41(4): 1–5
ZHAN Hanhui, ZHU Hui, CHEN Jinduan, et al. Numerical simulation of secondary flow ( Dean vortices) in 90°curved tube[J]. Boiler Technology, 2010, 41(4): 1–5
[20] 李树勋, 康云星, 孟令旗等. 多级降压疏水调节阀流致噪声数值模拟研究[J]. 振动与冲击, 2020, 39(14): 116–121
LI Shuxun, KANG Yunxing, MENG Lingqi, et al. Flow-induced noise of a high pressure drop control valve[J]. Journal of Vibration and Shock, 2020, 39(14): 116–121