水下对接分析是一个非常复杂的过程,除了需要考虑受到的碰撞力大小以外,还需要考虑碰撞形变和水流扰动的相互影响。基于此,本文通过虚拟样机软件模拟AUV的对接过程,验证对接时的碰撞力,确定瞬态结构场,并将其加载到有限元分析软件的流体场中进行基于系统动网格的双向流固耦合仿真,分析得到了较为准确的DOCK变形云图、应力云图、应变云图和系统流体压力云图。本文研究可为AUV水下对接操作提供技术支持,对水下对接的相关研究具有一定的参考价值。
The analysis of underwater docking is a very complicated process. In addition to the impact force, the interaction between the impact deformation and the flow disturbance should be considered. Based on this, this paper attempts to simulate the docking process of AUV by virtual prototype software, verify the collision force during docking, determine the transient structure field, and load it into the fluid field for two-way fluid-structure coupling simulation based on the system dynamic grid. Through the analysis of this paper, more accurate DOCK deformation cloud, stress cloud, strain cloud and system fluid pressure cloud are obtained. This study can provide technical support for AUV underwater docking operation, and has certain reference value for related research on underwater docking.
2023,45(16): 69-74 收稿日期:2022-8-13
DOI:10.3404/j.issn.1672-7649.2023.16.014
分类号:U663
基金项目:辽宁省教育厅科学研究经费项目(202015401)
作者简介:刁家宇(1998-),男,硕士研究生,研究方向为水下机器人、计算机辅助工程
参考文献:
[1] KRONEN D M, UNIVERSITY F A. Docking the ocean explorer autonomous underwater vehicle using a low-cost acoustic positioning system and a fuzzy logic guidance algorithm[M]. Florida Atlantic University, 1997.
[2] DAVIS D T. Precision control and maneuvering of the phoenix autonomous underwater vehicle for entering a recovery tube[J]. Monterey, California: Naval Postgraduate School, 1997.
[3] 郑荣, 宋涛, 孙庆刚, 等. 自主式水下机器人水下对接技术综述[J]. 中国舰船研究, 2018, 13(6): 43–49+65
ZHENG R, SONG T, SUN Q, et al. Review on underwater docking technology of autonomous underwater vehicle[J]. Chinese Ship Research, 2018, 13(6): 43–49+65
[4] SINGH H, BELLINGHAM J G, HOVER F, et al. Docking for an autonomous ocean sampling network[J]. IEEE Journal of Oceanic Engineering, 2001, 26(4): 498–514
[5] 燕奎臣, 吴利红. AUV水下对接关键技术研究[J]. 机器人, 2007(3): 267–273
YAN K C, WU L H. Research on key technology of AUV underwater docking[J]. Robot, 2007(3): 267–273
[6] 赵国良, 许可, 赵春城, 等. 导向喇叭口剖面半径对AUV回收的影响[J]. 水下无人系统学报, 2018, 26(2): 166–173
ZHAO G L, XU K, ZHAO C C, et al. Influence of guide bell profile radius on AUV recovery[J]. Journal of Underwater Unmanned Systems, 2018, 26(2): 166–173
[7] TAO Z, LI D, YANG C. Study on impact process of AUV underwater docking with a cone-shaped dock [J]. Ocean Engineering, 2017, 130: 176–187.
[8] MENG L, LIN Y, GU H, et al. Study on dynamic docking process and collision problems of captured-rod docking method [J]. Ocean Engineering, 2019, 193: 106624–106631.
[9] CHENG L. Hydrodynamic interactions between two bodies [J]. Journal of Hydrodynamics, 2007, 19: 784–785.
[10] KAWASAKI T, FUKASAWA T, NOGUCHI T, et al. Development of AUV marine bird with underwater docking and recharging system[C]//International Workshop on Scientific Use of Submarine Cables & Related Technologies. IEEE Xplore, 2003.
[11] WU L, LI Y, SU S, et al. Hydrodynamic analysis of AUV underwater docking with a cone-shaped dock under ocean currents[J]. Ocean Engineering, 2014, 85(15): 110–126
[12] LANKARANI H M, NIKRAVESH P E. A contact force model with hysteresis damping for impact analysis of multibody systems[J]. Journal of Mechanical Design, 1990, 112(3): 369–376
[13] LANKARANI H M, NIKRAVESH P E. Continuous contact force models for impact analysis in multibody systems[J]. Nonlinear Dynamics, 1994, 5(2): 193–207
[14] 史剑光, 李德骏, 杨灿军, 等. 水下自主机器人接驳碰撞过程分析[J]. 浙江大学学报:工学版, 2015, 49(3): 497–504
SHI J G, LI D J, YANG C J, et al. Analysis on collision process of underwater autonomous robot[J]. Journal of Zhejiang University: Engineering Science, 2015, 49(3): 497–504