本文研究当水下航行器外壳体振动传感器总数确定之后,如何利用这有限个数的传感器得到更多航行器壳体振动信息,从而更准确地评估航行器当前声隐身状态的问题。基于结合声辐射模态理论,给出传感器优化配置方法和步骤,并利用类似水下航行器的椭球壳体结构作为研究对象进行仿真,对该方法进行验证。研究结果表明,针对类椭球结构的水下航行器,低频段壳体传感器应布置在两端及中间位置。
The problem of how to arrange the sensors on the shell of the underwater vehicle aimed to assess the vehicle acoustic stealth situation better was researched. With the use of acoustic radiation mode theory, the method and steps of optimal sensor placement has been put forward. The simulation analysis of a quasi-elliptic shell structure similar to the common underwater vehicle has been given to validate the method in addition. The results showed that aimed at low frequency band the sensors should be located on the both ends and intermediate position of the structure.
2023,45(16): 108-111 收稿日期:2022-7-22
DOI:10.3404/j.issn.1672-7649.2023.16.022
分类号:TP391
基金项目:湖北省自然科学基金青年基金资助项目(2021CFB266)
作者简介:汤智胤(1981-),男,博士,副教授,研究方向为船舶辅助机械
参考文献:
[1] FENG X, YAN L, CHUN W. Review on vibration isolation technology[J]. Journal of Physics: Conference Series, 2021, 1820: 1–5
[2] 苏强, 王桂波, 朱鹏飞, 等. 国外潜艇声隐身前沿发展综述[J]. 舰船科学技术, 2014, 36(1): 1–9
SU Qiang, WANG Guibo, ZHU Pengfei, et al. A review of the frontier development of submarine acoustic stealth abroad[J]. Ship Science and Technology, 2014, 36(1): 1–9
[3] 何琳. 潜艇隐身技术进展[J]. 舰船科学技术, 2006, 28(S2): 9–17
HE Lin. Progress in submarine stealth technology[J]. Ship Science and Technology, 2006, 28(S2): 9–17
[4] 汤智胤, 金广文, 何琳. 潜艇声隐身状态快速评估研究[J]. 振动与冲击, 2008, 27(7): 113–117
TANG Zhiyin, JIN Guangwen, HE Lin. Research on rapid evaluation of submarine acoustic stealth status[J]. Vibration and Shock, 2008, 27(7): 113–117
[5] CURNFARE K A. The radiation modes of baffled finite plate[J]. Journal Acoustical Society of America, 1995, 98(3): 1570–1580
[6] GUO Liang, ZHU Hai-chao, MAO Rong-fu, et al. Sound field separation technique based on acoustic radiation modes[J]. Journal of Ship Mechanics, 2017, 21(6): 779–790
[7] 苏俊博, 朱海潮, 毛荣富, 等. 基于声辐射模态的声场重建中的测点优化方法[J]. 振动与冲击, 2017, 36(3): 145–150
SU Junbo, ZHU Haichao, MAO Rongfu, et al. Optimization method of measurement points in sound field reconstruction based on acoustic radiation mode[J]. Vibration and Shock, 2017, 36(3): 145–150
[8] 聂永发, 朱海潮. 利用源强密度声辐射模态重建声场[J]. 物理学报, 2014(10): 256–267
[9] 聂永发, 朱海潮. 复杂结构声辐射模态的计算[J]. 应用声学, 2014, 33(6): 534–540
[10] 鱼海涛, 王英民, 王奇. 利用声辐射模态重构任意目标的散射声场[J]. 应用声学, 2017, 36(3): 264–275
[11] 吴锦武, 原海朋, 毛崎波. 层合板结构声辐射模态传感器分析与测量[J]. 振动与冲击, 2016, 35(13): 26–30
[12] 汤智胤, 姜荣俊, 何琳. 潜艇声隐身态势评估方法研究[J]. 武汉理工大学学报(交通科学与工程版), 2007, 31(1): 17–20
[13] KAMMER D C. Sensor placements for on-orbit modal identification of large space structures[J]. Journal of Guidance, Control, and Dynamics, 1991, 14(2): 252–259
[14] GUYAN R I. Reduction of stiffness and mass matrics[J]. AIAA Journal, 1995, 3(2): 380
[15] THOMAS G C, CLARK R D. A modal test design strategy for modal correlation[C]//In: Proc 13th International Modal Analysis Conference. New York, 1995: 927–933.
[16] 毛崎波, 姜哲. 通过声辐射模态研究结构噪声的有源控制[J]. 江苏理工大学学报(自然科学版), 2000(4): 1–6
[17] 石炜. 矩形薄板的振动与声辐射研究及其控制[D]. 成都: 西南交通大学, 2010.
[18] 毛崎波, 姜哲. 通过声辐射模态研究结构声辐射的有源控制[J]. 声学学报, 2001(3): 277–281
MAO Qibo, JIANG Zhe. Research on active control of structural acoustic radiation through acoustic radiation modal[J]. Journal of Acoustics, 2001(3): 277–281