本文提出一种梭型潜水器外形方案,利用CFD方法,对潜水器周围粘性流场进行仿真计算,获得了梭型潜水器的阻力特性,并对比分析了型长、型宽和型深变化对潜水器阻力性能的影响规律。计算结果表明,梭型潜水器的摩擦阻力系数比“相当平板”的摩擦阻力系数略大;当去流段长度超过型深的5倍后,粘压阻力系数的变化趋于平缓,型宽和型深对粘压阻力系数的影响变得很小;若要降低梭型潜水器阻力,则应减小进流段长度,并将去流段长度取为型深的3~4倍。
A new hull form of shuttle-shaped underwater vehicle was proposed. Numerical simulation on the viscous flow around the vehicle is processed by solving Reynolds-averaged Navier-Stokes equations with the finite volume method. The calculated results are compared and analyzed to reveal the influence of length,breadth and depth on the resistance of the vehicle. The results show that the frictional resistance coefficient of this shuttle-typed underwater vehicle is slightly larger than that of the equivalent plate. The influences of breadth and depth on viscous pressure resistance coefficient become very small when the ratio between afterbody length with depth larger than 5. In order to reduce the resistance of the vehicle, the length of forebody should be decreased and the range of afterbody length is recommended 3~4 times the depth.
2023,45(17): 10-14 收稿日期:2022-07-28
DOI:10.3404/j.issn.1672-7649.2023.17.002
分类号:U661.31
基金项目:国家部委基金资助项目(DJYJNK2019-008)
作者简介:吕晓军(1985-),男,博士,助理研究员,研究方向为舰艇水动力学
参考文献:
[1] 何漫丽. 水下自航行器水动力学特性数值计算与试验研究[D]. 天津: 天津大学, 2005.
[2] 张新曙, 缪国平, 黄国梁, 等. 碟形潜水器水动力性能研究[J]. 上海交通大学学报, 2003, 37(8): 1186–1188 ZHANG Xin-shu, MIAO Guo-ping, HUANG Guo-liang, etc. Hydrodynamic characteristics of a dish-shaped underwater vehicle[J]. Journal of ShanghaiJiaotong University, 2003, 37(8): 1186–1188
[3] 张怀新, 潘雨村. 圆碟形潜水器阻力性能研究[J]. 上海交通大学学报, 2006, 40(6): 978–982 ZHANG Huaixin, PAN Yucun. The resistance performance of a dish-shaped underwater vehicle[J]. Journal of ShanghaiJiaotong University, 2006, 40(6): 978–982
[4] 郭魁俊. 自主式水下航行器水动力系数数值研究[D]. 哈尔滨: 哈尔滨工业大学, 2009.
[5] EGESKOV P, BJERRUM A, PASCOAL A, etc. Design, construction and hydrodynamic testing of the AUV MARIUS[C]. Symposium on Autonomous Underwater Vehicle Technology, 1994: 199-207. Cambridge.
[6] DESSET S, DAMUS R, HOVER F, etc. Closer to deep underwater science with ODYSSEY IV Class Hovering Autonomous Underwater Vehicle(HAUV)[C]. Oceans 2005-Europe, Vol. 2, 758-762.
[7] POREMBA Ⅲ J. E. Hydrodynamics and maneuvering simulations of a non-body-of-revolution submarine[D]. Pennsylvania, Pennsylvania State University, 2009.
[8] 李佳, 黄德波, 邓锐. 载人潜器阻力的数值计算方法分析[J]. 船舶力学, 2010, 14(4): 333–339 LI Jia, HUANG De-bo, DENG Rui. Analysis on the numerical simulation of drag of a manned submersible[J]. Journal of Ship Mechanics, 2010, 14(4): 333–339
[9] 张楠, 沈泓萃, 姚惠之. 潜艇阻力与流场的数值模拟与验证及艇型的数值优化研究[J]. 船舶力学, 2005, 9(1): 1–13
[10] 涂海文, 孙江龙. 基于CFD的潜艇阻力及流场数值计算[J]. 舰船科学技术, 2012, 34(3): 19–25 TU Hai-wen, SUN Jiang-long. Numerical analysis of resistance and flow field of submarine based on CFD[J]. Ship Science and Technology, 2012, 34(3): 19–25
[11] 吕晓军, 周其斗, 段嘉希. 网格参数与离散格式对潜艇阻力预报精度影响研究[J]. 海军工程大学学报, 2014, 26(2): 40–44 LÜ Xiao-jun, ZHOU Qi-dou, Duan Jia-xi. Grid parameter and discretization scheme for prediction of submarine resistance[J]. Journal of Naval University of Engineering, 2014, 26(2): 40–44