针对货运船舶特点和绿色技术使用情况,建立船舶多目标主尺度优化模型,确定主要的不确定性因素并拟合其概率分布情况,利用蒙特卡罗模拟法结合参数分析法进行不确定性优化论证,得到Pareto解集和最终优化结果,将该结果与采用NSGA-II算法得到的确定性优化论证结果进行对比。实例结果表明:考虑本文提到的不确定性因素下的船型论证基本不改变主尺度理论优选值,不确定性优化结果的各项指标较确定性优化更好且更能反映实际情况。当对货船有更高要求时,不确定性优化论证可能影响投资决策。
According to the characteristics of cargo ships and green technology, the paper establishes a multi-objective principal dimensions optimization model of ships, determines the principal uncertainty factors and fits their probability distributions. The uncertainty optimization demonstration is carried out by using the Monte Carlo simulation method combined with the parameter analysis method. The Pareto solution set and the final optimization result are obtained, and the result is compared with the deterministic optimization demonstration result obtained by the NSGA-II (non-dominated sorting genetic algorithm II). Cases calculation shows that the ship demonstration, considering uncertainty factors mentioned in the paper, basically does not change the theoretical optimal value of the principal dimensions. The indicators of uncertain optimization results are better than those of deterministic optimization and can reflect the actual situation better. When there are higher requirements for cargo ships, the uncertainty optimization demonstration may affect investment decisions.
2023,45(17): 36-42 收稿日期:2022-03-01
DOI:10.3404/j.issn.1672-7649.2023.17.007
分类号:U662
基金项目:工信部高技术船舶创新专项(103-42200012),三峡后续工作科研项目(SXHXGZ-2021-5)
作者简介:马瑜聪(1997-),女,硕士研究生,研究方向为船舶数字化设计理论与方法
参考文献:
[1] 金雁, 赵耀. 基于改进蚁群算法的船舶主尺度优化[J]. 华中科技大学学报(自然科学版), 2008, 11: 99–102 JIN Y, ZHAO Y. Optimization of ship principal parameters with improved ant colony algorithm[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2008, 11: 99–102
[2] 陈雅菊. 基于多目标粒子群优化和主成分聚类分析的船舶主尺度分析[J]. 舰船科学技术, 2015, 37(8): 45–51 CHEN Y J. Application of multiobjective particle swarm optimization and principle component clustering analysis in ship main dimensions analysis[J]. Ship Science and Technology, 2015, 37(8): 45–51
[3] 骆义, 高惠君, 魏洪斌. 三峡库区过闸适应性船型主尺度论证[C]//中国造船工程学会. 第十二届全国内河船舶与航运学术会议论文集. 北京: 中国造船工程学会, 2012: 125–131.
[4] 卓宏明, 陈倩清. 基于均匀正交萤火虫算法的采矿船主尺度优化[J]. 船海工程, 2020, 49(5): 76–80
[5] 杨朝辉. 基于卡方检验的SAR图像道路检测算法[J]. 计算机工程与设计, 2012, 33(5): 1923–1927
[6] Rubinstein R Y, Kroese D P. Simulation and the Monte Carlo method (2nd ed. )[M]. New York: John Wiley & Sons, 2007.
[7] 刘光明. 内河柴油/LNG双燃料船舶能效提升方法研究[D]. 武汉: 武汉理工大学, 2019.
[8] 中国船级社. 内河绿色船舶规范[S]. 北京: 人民交通出版社, 2020.
[9] 谷宇, 包岩, 邓强. 超大型集装箱船方形系数及载箱量优选研究[J]. 船舶工程, 2017, 39(8): 21–24+68
[10] JTS180-4-2020, 长江干线通航标准[S]. 北京: 人民交通出版社, 2020.
[11] 张仁颐. 船舶工程经济学[M]. 上海: 上海交通大学出版社, 2001: 205–208.
[12] HOU Y H, Kang K, Xiong Y P, et al. Uncertainty optimisation design of USV based on the Six Sigma method[J]. Ocean Engineering, 2020, 200: 107045
[13] 苏绍娟, 介推, 刘波. 基于阻力和EEDI的船舶主尺度要素多学科设计优化[J]. 上海海事大学学报, 2018, 39(1): 25–30 SU S J, JIE T, LIU B. Multidisciplinary optimization design on ship principal dimensions based on resistance and EEDI[J]. Journal of Shanghai Maritime University, 2018, 39(1): 25–30