为了应对全球变暖的环境和油价上涨,航运业对节能船舶的发展寄予厚望。空气润滑能够减少船舶摩擦阻力和提高燃油效率,是一项非常具有发展前景的技术。本文主要介绍空气润滑减阻技术原理与分类,从喷气流量,气孔数量和位置以及船速3个方面,分析对空气润滑减阻效果产生的影响。得出以下结论:当船速恒定时,减阻率会随着喷气流量增加而升高;在船底或船侧布置气口时,气孔数量增加会提高减阻率,气孔应该布置在船底靠前位置,约为船长1/3;喷气流量应与船速相匹配,可以最大实现净节能,节省约输出功率的10%。
In response to global warming and oil prices, the shipping industry has high hopes for the development of energy-efficient ships. Air lubrication can reduce the frictional resistance of ships and improve fuel efficiency, and is a very promising technology. This paper mainly introduces the principle and classification of air lubricated drag reduction technology, and analyzes the impact on the air lubricated drag reduction effect from three aspects: jet flow rate, number and position of air holes, and ship speed. The following conclusions are drawn: the drag reduction rate will increase with the increase of the jet flow rate; the air holes should be arranged in the forward position of the bottom of the ship, which is about 1/3 of the length of the ship, the jet flow rate should match the ship speed, which can maximize the net energy saving and can save about 10% of output power.
2023,45(17): 43-47 收稿日期:2022-11-14
DOI:10.3404/j.issn.1672-7649.2023.17.008
分类号:U663.2
作者简介:战庭军(1996-),男,硕士,工程师,研究方向为海洋环境保护
参考文献:
[1] 许正杰, 林丰财. 325000 DWT矿砂船空气润滑系统设计与安装[J]. 广东造船, 2022, 41(2): 54–57 XU Z J, LIN F C. Design and installation of 325000 DWT ore ship air lubrication system[J]. Guangdong Shipbuilding, 2022, 41(2): 54–57
[2] 薛树业, 何利东. 国际航运碳强度规则下的船舶分类[J]. 世界海运, 2022, 45(8): 23–27 XUE S Y, HE L D. Classification of ships under the international shipping carbon intensity code[J]. World Shipping, 2022, 45(8): 23–27
[3] 池韶光. EEXI和CII的实施对海事行业的影响[J]. 广东造船, 2022, 41(3): 11–12 CHI S G. The impact of the implementation of EEXI and CII on the maritime industry[J]. Guangdong Shipbuilding, 2022, 41(3): 11–12
[4] 胡以怀, 李慧晶, 何浩. 国内外船舶气泡减阻技术的研究与应用[J]. 船舶与海洋工程, 2017, 33(6): 1-6.HU Y H, LI H J, H H. Research and application of ship’s bubble drag reduction technologies at home and abroad. Naval Architecture and Ocean Engineering, 2017, 33(6): 1-6.
[5] 徐天南. 国内外船舶气体减阻技术应用进展[J]. 船舶动力装置, 2021, 32(6): 69–74 XU T N. Application of air lubrication drag reduction technology at home and abroad[J]. Ship Power Plant, 2021, 32(6): 69–74
[6] 朱效谷, 李勇, 李文平. 电解水式驻留微气泡减阻技术及其可行性分析[J]. 船舶力学, 2014, 18(10): 1165–1174 ZHU X G, LI Y, LI W P. Feasibility analysis of drag reduction using trapped micro-bubbles by water electrolysis[J]. Journal of Ship Mechanics, 2014, 18(10): 1165–1174
[7] 高丽瑾, 陈少峰, 恽秋琴, 等. 气层减阻技术关键因素影响研究[J]. 中国造船, 2018, 59(4): 1–13.GAO L J, CHEN S F, YUN Q Q, et al. Research on influence factors in air layer drag reduction technology[J]. Ship Building of China. 2018, 59(4): 1–13.
[8] 邹存伟, 刘世伟, 张玲. 提高气泡船减阻率的技术措施[J]. 舰船科学技术, 2012, 34(10): 24–30 ZOU C W, LIU S W, Z L. Research on technical measures of improving the drag reduction rate of air cavity craft[J]. Ship Science and Technology, 2012, 34(10): 24–30
[9] 唐桂林, 倪其军, 王丽艳, 等. 高速气泡艇阻力数值模拟及气泡减阻效果分析[J]. 船舶力学, 2014, 18(8): 882–888 TANG G L, NI Q J, WANG L Y, LI S Z. Numerical evaluation of the resistance reduction effect for three-dimensional high-speed air cavity craft[J]. Journal of Ship Mechanics, 2014, 18(8): 882–888
[10] 王丽艳, 郝思文. 气泡减阻技术研究进展[J]. 船海工程, 2011, 40(6): 109–113 WANG L Y, HAO S W. On the development of bubble drag reduction technique[J]. Ship & Ocean Engineering, 2011, 40(6): 109–113
[11] 张艳. 气泡船节能关键技术与应用前景[J]. 中国水运, 2015, 15(2): 94–95 ZHANG Y. Key Technologies and application prospects of energy saving for bubbling ships[J]. China Water Transport, 2015, 15(2): 94–95
[12] 张天行, 朱汉华. 多孔透气材料应用于船模微气泡减阻性能实验分析[J]. 机械科学与技术, 2019, 38(5): 783–788.Experimental analysis on drag reduction performance of micro bubbles in ship models with porous breathable materials[J]. Mechanical Science and Technology for Aerospace Engineering, 2019, 38(5): 783–788.
[13] 邱力强. 船舶气泡润滑技术简介[J]. 青岛远洋船员学院学报, 2011, 32(4): 19–21 ZOU L Q. A Brief Introduction to Marine Air Bubble Lubrication Systems[J]. Journal of Qingdao Ocean Shipping Crew College, 2011, 32(4): 19–21
[14] 吴浩, 吴卫国, 陈克强. 船舶气泡减阻研究进展[J]. 中国造船, 2019, 60(1): 212–227 WU H, WU W G, CHEN K Q. Review of research on air bubble drag reduction on ships[J]. Ship Building of China, 2019, 60(1): 212–227
[15] 陈源, 邹星. 船舶气层减阻和空腔减阻技术的研究进展[J]. 船舶工程, 2021, 43(5): 44–52 CHEN Y, ZOU X. Review of Air Layer and Air Cavity Drag Reduction on Ships[J]. Ship Engineering, 2021, 43(5): 44–52
[16] Tanaka Taiji, Oishi Yoshihiko, Park hyun jin, tasaka yuji, murai yuichi, kawakita chiharu. frictional drag reduction caused by bubble injection in a turbulent boundary layer beneath a 36-m-long flat-bottom model ship[J]. Ocean Engineering, 2022, 252.
[17] 吴浩, 董文才, 欧勇鹏. 船舶气层减阻多相流数值模拟方法适配性研究[J]. 海军工程大学学报, 2016, 28(3): 70–75 WU H, DONG W C, OU Y P. Numerical method investigation of drag reduction with air layer at bottom of ship[J]. Journal of Naval University of Engineering, 2016, 28(3): 70–75
[18] Zhao Xiaojie, Zong Zhi. Experimental and numerical studies on the air-injection drag reduction of the ship model[J]. Ocean Engineering, 2022, 251.
[19] 宋武超, 王聪, 魏英杰, 等. 微气泡与聚合物对水下航行体减阻特性影响试验研究[J]. 兵工学报, 2018, 39(6): 1151–1158 SONG W C, WANG C, WEI Y J, LU L R. Influences of microbubble and homogeneous polymer on drag reduction characteristics of axisymmetric body[J]. Acta Armamentar II, 2018, 39(6): 1151–1158
[20] 付明琨, 闵景新, 卜祥一, 等. 气体润滑减阻的自主节能船研究[J]. 技术与市场, 2019, 26(1): 96+98 FU M K, MIN J X, BO X Y, et al. Research on the self energy saving ship with gas lubrication for drag reduction[J]. Technology and Market, 2019, 26(1): 96+98
[21] Jun Zhang, Shuo Yang, Jing Liu. Numerical investigation of a novel device for bubble generation to reduce ship drag[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 10(5).
[22] 毛亮, 伍锐, 刘恒, 季盛. 船底和船侧充气减阻研究[J]. 上海船舶运输科学研究所学报, 2020, 43(4): 1–6 MAO L, WU R, LIU H, JI S. Blowing out of ship bottom or ship sides—a study on drag reduction of air flim[J]. Journal of Shanghai Ship and Shipping Research Institute, 2020, 43(4): 1–6
[23] 徐庚辉, 张咏欧, 钟声驰. 两相流相互作用下的船模微气泡减阻性能数值仿真[J]. 船舶工程, 2019, 41(4): 31–35+59 XU G H, ZHANG Y O, ZHONG S C. Numerical simulation of ship model microbubble drag reduction based on two-phase flow interaction[J]. Ship Engineering, 2019, 41(4): 31–35+59
[24] 李瑞, 孙玉杰, 方鸿强, 等. 船舶微气泡润滑减阻的研究进展与数值模拟[J]. 中国水运, 2014, 14(12): 112–114 LI R, SUN Y J, FANG H Q, et al. Research progress and numerical simulation of drag reduction by microbubble lubrication in ships[J]. China Water Transport, 2014, 14(12): 112–114
[25] MÄKIHARJI S A, PERLIN M, CECCIO S L. On the energy economics of air lubrication drag reduction[J]. International Journal of Naval Architecture and Ocean Engineering, 2012, 4(4).
[26] Jinho Jang, Soon Ho Choi, Sung-Mok Ahn, et al. Experimental investigation of frictional resistance reduction with air layer on the hull bottom of a ship[J]. International Journal of Naval Architecture and Ocean Engineering, 2014, 6(2).