为保障无人船顺利执行勘测、投放等任务,提出无人船远程遥控系统运行状态实时在线监测方法。该方法利用感知层内温度传感器、气体传感器、柴油机监测仪、姿态传感器等采集无人船远程遥控系统运行状态实时数据后,通过感知节点控制器与网络层感知节点控制器连接,将无人船远程遥控系统运行状态实时数据传输到ZigBee网络内,再通过该网络将其传输到运算层内,使用运行状态监测模块和异常预警模块获得无人船远程遥控系统运行状态实时在线监测结果与异常结果,并将结果传输到应用层内,应用层通过可视化监测、异常预警展示等模块实现用户的人机交互。实验表明:该方法不仅可有效检测无人船远程操控系统的运行状态,还可对异常状态进行预警,且监测与预警的实时性较好。
A real-time online monitoring method for the operation status of unmanned ship remote control system is proposed to ensure the smooth execution of survey, deployment and other tasks. This method utilizes temperature sensors, gas sensors, diesel engine monitors, attitude sensors, and other sensors in the perception layer to collect real-time data on the operation status of the unmanned ship remote control system. The real-time data on the operation status of the unmanned ship remote control system is transmitted to the ZigBee network through the connection between the perception node controller and the network layer perception node controller, and then transmitted to the operation layer through the network, Use the operation status monitoring module and abnormal warning module to obtain real-time online monitoring results and abnormal results of the unmanned ship remote control system's operation status, and then transmit the results to the application layer. The application layer achieves user human-machine interaction through modules such as visual monitoring and abnormal warning display. The experiment shows that this method can not only effectively detect the operating status of unmanned ship remote control system, but also provide early warning for abnormal states, and the real-time monitoring and early warning is good.
2023,45(17): 83-86 收稿日期:2023-02-12
DOI:10.3404/j.issn.1672-7649.2023.17.017
分类号:TP391
基金项目:湖北省教育厅科研计划指导性项目(B2021246)
作者简介:李辉燕(1980-),女,讲师,研究方向为网络工程、大数据及数据挖掘
参考文献:
[1] 陈杰, 张辉, 娄保锋, 等. 船载自动监测系统在水质监测中的应用[J]. 中国环境监测, 2023, 39(2): 33-40.CHEN Jie, ZHANG Hui, LOU Baofeng, et al. Application of shipborne water quality automatic monitoring system in water quality monitoring [J]. Environmental Monitoring in China , 2023, 39(2): 33-40.
[2] 陈冬梅, 赵思恒, 魏承印, 等. 船舶柴油机状态监测及预测性维护研究及应用[J]. 中国机械工程, 2022, 33(10): 1162-1168.CHEN Dongmei, ZHAO Siheng, WEI Chengyin, et al. Research and applications of condition monitoring and predictive maintenance of marine diesel engines [J]. China Mechanical Engineering , 2022, 33(10): 1162-1168.
[3] 宁昶雄, 张雪琴, 严新平, 等. 船舶电力直驱推进装置状态监测和智能诊断[J]. 哈尔滨工程大学学报, 2023, 44(4): 527-537.NING Changxiong, ZHANG Xueqin, YAN Xinping, et al. Condition monitoring and intelligent diagnosis of marine electric direct-drive propulsion devices [J]. Journal of Harbin Engineering University, 2023, 44(4): 527-537.
[4] 王瑞涵, 陈辉, 管聪. 基于机器学习的船舶机舱设备状态监测方法[J]. 中国舰船研究, 2021, 16(1): 158-167.WANG Ruihan, CHE Hui, GUANG Cong. Condition monitoring method for marine engine room equipment based on machine learning [J]. Chinese Journal of Ship Research, 2021, 16(1): 158-167.
[5] 李杰, 张华玉, 金华标, 等. 内河船舶能效在线监测系统的混合压缩策略设计[J]. 武汉理工大学学报, 2022, 44(4): 30-35.LI Jie, ZHANG Hua-yu, JIN Hua-biao, et al. Design of inland ship energy efficiency online monitoring system based on hybrid compression strategy[J]. Journal of Wuhan University of Technology, 2022, 44(4): 30-35.
[6] 操江能, 尚前明, 杨安声, 等. 基于优化孤立森林的船舶柴油机故障监测[J]. 船舶工程, 2021, 43(11): 125-132.CAO Jiangneng, SHANG Qianming, YANG Ansheng, et al. Fault monitoring of marine diesel engine based on optimized isolated forest [J]. Ship Engineering, 2021, 43(11): 125-132.
[7] 江先亮, 尚子宁, 金光. 基于无人船的水产养殖水质动态监测系统设计与实验[J]. 农业机械学报, 2020, 51(9): 175-185, 174.JIANG Xianliang, SHANG Zining, JIN Guang. Design and test of dynamic water quality monitoring system for aquaculture based on unmanned surface vehicle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 175-185, 174.
[8] 蒋佳炜, 胡以怀, 丁梦豪, 等. 基于相对混乱度特征选择的船舶风机智能状态监测与故障诊断[J]. 上海海事大学学报, 2023, 44(1): 88-94.JINAG Jiawei, HU Yihuai, DING Menghao, et al. Intelligent condition monitoring and fault diagnosis of marine fans based on feature selection of relative chaos[J]. Journal of Shanghai Maritime University, 2023, 44(1): 88-94.