为充分利用飞轮储能对船舶直流微电网功率补偿的优势,弥补燃气轮机发电系统输出功率调节响应慢的不足,对船用燃机直流微电网大功率负载下的飞轮储能系统控制策略和电网响应特性进行研究。本文基于100 kW实装微型燃气轮机发电机组,建立了包括燃气轮机、发电机、飞轮储能系统的船舶直流微电网模型,并在有无飞轮储能系统的情况下,分别突加、突卸40%、60%、80%额定功率负载,详细分析不同负载模式下直流母线电压、发电机转速和飞轮转速的变化特性。结果表明,所提出的飞轮储能系统控制策略可以及时补偿大功率负载冲击下发电机和负载之间功率不平衡,防止母线电压和同步发电机转速波动过大,有效提升微型燃气轮机发电系统的电能质量和稳定性。
In order to make full use of the advantages of flywheel energy storage in power compensation of marine DC microgrid and make up for the shortage of slow output power regulation response of gas turbine power generation system, the control strategy of flywheel energy storage system and the grid response characteristics under high power load of marine gas turbine DC microgrid are studied. Based on a practical 100 kW micro gas turbine generator set, a marine DC microgrid model including gas turbine, generator and flywheel energy storage system is established. The changes of DC bus voltage, synchronous generator speed, are studied by abruptly loading and unloading 40%, 60% and 80% rated loads with or without flywheel energy storage system. The results show that the control strategy of the flywheel energy storage system proposed in this paper can compensate the power imbalance between the generator and the load in time, prevent the bus voltage and synchronous generator speed from large fluctuation, and effectively improve the power quality and the stability of micro turbine generation system.
2023,45(17): 102-111 收稿日期:2022-08-20
DOI:10.3404/j.issn.1672-7649.2023.17.021
分类号:U665.12
基金项目:国家科技重大专项项目(J2019-I-0012-0012)
作者简介:李月明(1996-),男,硕士研究生,主要研究方向为动力机械及热力系统的设计、仿真与优化
参考文献:
[1] 马伟明. 舰船综合电力系统中的机电能量转换技术[J]. 电气工程学报, 2015, 10(4): 3–10
[2] FANG S, WANG Y, GOU B, et al. Toward future green maritime transportation: An overview of seaport microgrids and all-electric ships[J]. IEEE Transactions on Vehicular Technology, 2019, 69(1): 207–219
[3] Li J, Liu F, Chen Y, et al. Resilience control of DC shipboard power systems[J]. IEEE Transactions on Power Systems, 2018, 33(6): 6675–6685
[4] Ali Z, Terriche Y, Hoang L Q N, et al. Fault management in DC microgrids: A review of challenges, countermeasures, and future research trends[J]. IEEE Access, 2021, 9(12): 128032–128054
[5] DESSORNES O, LANDAIS S, VALLE R, et al. Advances in the development of a microturbine engine[J]. Journal of Engineering for Gas Turbines Power, 2014, 136(7): 071201
[6] SELJAK T, BUFFI M, VALERA-MEDINA A, et al. Bioliquids and their use in power generation-A technology review[J]. Renewable and Sustainable Energy Review, 2020, 129(10): 109930
[7] DUAN J, LIU J, XIAO Q, et al. Cooperative controls of micro gas turbine and super capacitor hybrid power generation system for pulsed power load[J]. Energy, 2019, 169: 1242–1258
[8] HARDAN F, NORMAN R, TRICOLI P. Control and operation of a ship AC/DC microgrid under transient propulsion and manoeuvring load conditions[J]. International Journal of Electrical Power and Energy Systems, 2022, 139: 107823
[9] DUAN J, FAN S, WU F, et al. Power balance control of micro gas turbine generation system based on supercapacitor energy storage[J]. Energy, 2017, 119: 442–452
[10] ZHOU Z, BENBOUZID M, CHARPENTIER, et al. A review of energy storage technologies for marine current energy systems[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 390–400
[11] ARANI A A K, GHAREHPETIAN G B, ABEDI M. Review on energy storage systems control methods in microgrids[J]. International Journal of Electrical Power and Energy Systems, 2019, 107: 745–757
[12] 王松岑, 来小康, 程时杰. 大规模储能技术在电力系统中的应用前景分析[J]. 电力系统自动化, 2013, 37(1): 3–8
[13] 戴兴建, 姜新建, 张剀. 飞轮储能系统技术与工程应用[M]. 北京: 化学工业出版社, 2021.
[14] FADDEL S, SAAD A A, HARIRI M E, et al. Coordination of hybrid energy storage for ship power systems with pulsed loads [J]. IEEE Transactions on Industry Applications, 2020, 56(2): 1136-1145.
[15] SALEH A, AWAD A, GHANEM W. Modeling, control, and simulation of a new topology of flywheel energy storage systems in microgrids[J]. IEEE Access, 2019, 7: 160363–160376
[16] 刘永葆, 文强, 贺星, 等. 飞轮储能对船用燃气轮机发电系统稳定性影响的仿真研究[J]. 海军工程大学学报, 2017, 29(6): 60–66
[17] 邱子鉴, 李宝国, 郑怡璇. 光伏微电网储能平抑功率波动的控制策略研究[J]. 辽宁工业大学学报, 2021, 41(5): 312–316
[18] 支娜, 丁有国, 赵佳宝. 直流微电网改进虚拟直流电机控制策略[J]. 电力电子技术, 2020, 54(12): 93–95
[19] 梁明玉, 蔡新红, 龚立娇, 等. 基于下垂控制的微电网并网预同步控制研究[J]. 计算机仿真, 2022, 39(4): 80–86
[20] 李浩冬, 刘永葆, 贺星. 微型燃气轮机动态特性仿真[J]. 舰船科学技术, 2020, 42(21): 91–95
[21] 翟小飞, 刘德志, 欧阳斌, 等. 双闭环控制的三相整流发电机数字式励磁系统[J]. 电机与控制学报, 2011, 15(3): 19–24
[22] 邵梦麟, 梁前超, 闫东, 等. 船用燃气轮机发电机组动态性能仿真[J]. 舰船科学技术, 2016, 38(7): 71–76